陶瓷
微观结构
粒度
材料科学
微晶
稀土
烧结
掺杂剂
镧系元素
固溶体
结晶学
物理
分析化学(期刊)
组合数学
矿物学
兴奋剂
复合材料
数学
离子
冶金
化学
量子力学
色谱法
光电子学
作者
K. P. Andryushin,А. В. Нагаенко,С. В. Хасбулатов,Л. А. Шилкина,Е. В. Глазунова,С. И. Дудкина,I. N. Andryushina,Л. А. Резниченко
标识
DOI:10.1142/s2010135x21600055
摘要
Solid solutions of the composition Ba[Formula: see text](Mg, Ln)[Formula: see text][Formula: see text]TiO 3 ([Formula: see text] = 0.01; 0.025; 0.04; [Formula: see text] = 0.20; 0.50; 0.80; Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb) were prepared by two-stage solid-phase synthesis followed by sintering using conventional ceramic technology. The influence of rare-earth elements on the microstructure of the prepared ceramic samples was investigated. It was found that regardless of the type of modifiers introduced, the grain landscape of the studied solid solutions with different amounts of SrTiO 3 is refined (in the initial system, the average grain size, [Formula: see text], at [Formula: see text] = 0.20 is 6 [Formula: see text]m; at [Formula: see text] = 0.50 is 4 [Formula: see text]m; at [Formula: see text] = 0.80 is 18 [Formula: see text]m) to crystallite sizes not exceeding (2-3) [Formula: see text]m, and compacted. The using of mechanical activation procedures leads to an even greater decrease in the size and an increase in the density of ceramics. The increasing in the concentration of modifiers in each group (within the considered range of dopant variation) against the background of such a fine-grained structure has little effect on the dynamics of changes in [Formula: see text]. It is concluded that it is advisable to use the data obtained in the development of functional materials based on BST/(Mg, Ln) and devices with the participation of these compositions.
科研通智能强力驱动
Strongly Powered by AbleSci AI