Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging

可解释性 医学 骨关节炎 人工智能 磁共振成像 深度学习 机器学习 计算机科学 病理 放射科 替代医学
作者
Francesco Calivá,Nikan K. Namiri,Maureen Dubreuil,Valentina Pedoia,Eugene Ozhinsky,Sharmila Majumdar
出处
期刊:Nature Reviews Rheumatology [Nature Portfolio]
卷期号:18 (2): 112-121 被引量:35
标识
DOI:10.1038/s41584-021-00719-7
摘要

The 3D nature and soft-tissue contrast of MRI makes it an invaluable tool for osteoarthritis research, by facilitating the elucidation of disease pathogenesis and progression. The recent increasing employment of MRI has certainly been stimulated by major advances that are due to considerable investment in research, particularly related to artificial intelligence (AI). These AI-related advances are revolutionizing the use of MRI in clinical research by augmenting activities ranging from image acquisition to post-processing. Automation is key to reducing the long acquisition times of MRI, conducting large-scale longitudinal studies and quantitatively defining morphometric and other important clinical features of both soft and hard tissues in various anatomical joints. Deep learning methods have been used recently for multiple applications in the musculoskeletal field to improve understanding of osteoarthritis. Compared with labour-intensive human efforts, AI-based methods have advantages and potential in all stages of imaging, as well as post-processing steps, including aiding diagnosis and prognosis. However, AI-based methods also have limitations, including the arguably limited interpretability of AI models. Given that the AI community is highly invested in uncovering uncertainties associated with model predictions and improving their interpretability, we envision future clinical translation and progressive increase in the use of AI algorithms to support clinicians in optimizing patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢小蚂蚁完成签到 ,获得积分10
刚刚
Domagin发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
又又完成签到 ,获得积分10
2秒前
3秒前
666完成签到 ,获得积分10
3秒前
老谢医生完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
于瑜与余完成签到 ,获得积分10
6秒前
tsehmu1完成签到 ,获得积分10
6秒前
Jasper应助薛定谔的猫采纳,获得10
7秒前
7秒前
一二三木偶人完成签到,获得积分10
7秒前
幸福大白发布了新的文献求助10
8秒前
9秒前
9秒前
万刈发布了新的文献求助10
9秒前
翎儿响叮当完成签到 ,获得积分10
10秒前
玄学大哥发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
刘佳完成签到 ,获得积分10
12秒前
12秒前
13秒前
无限千山完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
reading gene完成签到,获得积分20
14秒前
小猫咸菜完成签到,获得积分10
14秒前
15秒前
科研通AI5应助赵铁柱采纳,获得10
16秒前
17秒前
17秒前
那个人发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743