辍学(神经网络)
网络数据包
卡尔曼滤波器
控制理论(社会学)
马尔可夫链
计算机科学
断层(地质)
马尔可夫过程
扩展卡尔曼滤波器
非线性系统
国家(计算机科学)
马尔可夫模型
事件(粒子物理)
数学
算法
人工智能
统计
计算机网络
机器学习
地质学
物理
地震学
控制(管理)
量子力学
作者
Zhicheng Xu,Bo Ding,Tianping Zhang
标识
DOI:10.1016/j.jfranklin.2021.11.017
摘要
This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI