XBP1型
ATF6
未折叠蛋白反应
内质网
激活转录因子
叶黄素
转录因子
信号转导
ATF4
细胞生物学
化学
磷酸化
生物
生物化学
RNA剪接
基因
核糖核酸
类胡萝卜素
作者
Arpitha Haranahalli Shivarudrappa,Kunal Sharan,Ganesan Ponesakki
标识
DOI:10.1016/j.ejphar.2021.174663
摘要
We have earlier demonstrated that lutein effectively prevents hyperglycemia generated sustained oxidative stress in ARPE-19 cells by activating Nrf2 (nuclear factor erythroid 2-related factor 2) signaling. Since evidence portrays an intricate connection between ER (endoplasmic reticulum) stress and hyperglycemia-mediated oxidative stress, we aimed to explore the protective mechanism of lutein on hyperglycemia-induced ER stress in ARPE-19 cells. To determine the effect of lutein, we probed three major downstream branches of unfolded protein response (UPR) signaling pathways using western blot, immunofluorescent and RT-PCR techniques. The data showed a reduction (38%) in protein expression of an imperative ER chaperon, BiP (binding immunoglobulin protein), in glucose-treated ARPE-19 cells. At the same time, lutein pretreatment blocked this glucose-mediated effect, leading to a significant increase in BiP expression. Lutein promoted the phosphorylation of IRE1 (inositol requiring enzyme 1) and subsequent splicing of XBP1 (X-box binding protein 1), leading to enhanced nuclear translocation. Likewise, lutein activated the expression and translocation of transcription factors, ATF6 (activating transcription factor 6) and ATF4 (activating transcription factor 4) suppressed by hyperglycemia. Lutein also increased CHOP (C/EBP-homologous protein) levels in ARPE-19 cultured under high glucose conditions. The mRNA expression study showed that lutein pretreatment upregulates downstream UPR genes HRD1 (ERAD-associated E3 ubiquitin-protein ligase HRD1), p58IPK (protein kinase inhibitor p58) compared to high glucose treatment alone. From our study, it is clear that lutein show protection against hyperglycemia-mediated ER stress in ARPE-19 cells by activating IRE1-XBP1, ATF6, and ATF4 pathways and their downstream activators. Thus, lutein may have the pharmacological potential for protection against widespread disease conditions of ER stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI