The performance of green innovation: From an efficiency perspective

趋同(经济学) 索引(排版) 集聚经济 构造(python库) 生态效率 计量经济模型 经济 环境经济学 绿色发展 空间计量经济学 计量经济学 产业组织 计算机科学 可持续发展 微观经济学 经济增长 生态学 万维网 程序设计语言 生物
作者
Nan Zhao,Xiaojie Liu,Pan Chang-feng,Chenyang Wang
出处
期刊:Socio-economic Planning Sciences [Elsevier]
卷期号:78: 101062-101062 被引量:95
标识
DOI:10.1016/j.seps.2021.101062
摘要

In this new stage of global economic development, we hope to achieve both economic development and environmental improvements via innovation. Green innovation aims to meet the dual goals of economic development and ecological protection. The scientific evaluation of the performance of China's green innovation appears to be quite meaningful. Some studies have evaluated the performance of green innovation, but are limited by the use of a single efficiency measurement method. To fill this research gap, this article uses a combination of two methods to evaluate green innovation efficiency, which provides a more precise evaluation of efficiency. Specifically, this article uses the vertical-and-horizontal scatter degree method to construct a pollutant index and then sets that index as the undesirable output in a slacks-based measure (SBM) model to evaluate efficiency. To further study the regional differences in green innovation efficiency, this article uses a convergence model. Most existing convergence analyses ignore spatial elements. Focusing on the influence of spatial factors, this article introduces a spatial econometric model into the convergence analyses. This article draws the following main conclusions. (i) The efficiency of green innovation in the country as a whole has been increasing each year, and green innovation efficiency in the central and western regions has increased significantly. (ii) Regional differences have narrowed each year. (iii) Green innovation efficiency is significantly positively spatially correlated, which is reflected in the spatial agglomeration of regions with the same efficiency level. (iv) Green innovation efficiency exhibits σ-convergence and spatial conditional β-convergence. (iv) Spatial factors accelerate the convergence of green innovation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的远望应助与其会意采纳,获得10
刚刚
wjoker完成签到,获得积分20
刚刚
1秒前
彩色橘子发布了新的文献求助10
1秒前
上官若男应助HLT采纳,获得10
1秒前
wmq完成签到,获得积分10
1秒前
星辰大海应助ggg采纳,获得50
1秒前
Liu1YT发布了新的文献求助10
2秒前
月牙湾发布了新的文献求助20
3秒前
李健的小迷弟应助Eurus采纳,获得10
4秒前
抗体小王发布了新的文献求助10
4秒前
Weining发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助现实的访云采纳,获得10
5秒前
Ava应助乐乐采纳,获得10
5秒前
多情捕发布了新的文献求助10
6秒前
高大的羽毛完成签到,获得积分10
7秒前
皇甫若之完成签到,获得积分10
7秒前
9秒前
11秒前
12秒前
12秒前
13秒前
情怀应助ggg采纳,获得10
13秒前
13秒前
Dodobirdzhb完成签到,获得积分10
13秒前
502s完成签到,获得积分10
15秒前
优秀老师发布了新的文献求助10
16秒前
我是老大应助李李原上采纳,获得10
16秒前
吐司匹林发布了新的文献求助10
17秒前
17秒前
健身boy完成签到,获得积分10
17秒前
樱桃窝窝头完成签到,获得积分10
17秒前
Dodobirdzhb发布了新的文献求助10
18秒前
L一年发布了新的文献求助10
18秒前
无为完成签到,获得积分10
18秒前
乐乐发布了新的文献求助10
18秒前
19秒前
20秒前
HLT发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912