清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

计算机科学 设施选址问题 转运(资讯保安) 网络规划与设计 运筹学 整数规划 计算机网络 工程类 算法 计算机安全
作者
Junming Liu,Weiwei Chen,Jingyuan Yang,Hui Xiong,Can Chen
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 769-789 被引量:12
标识
DOI:10.1287/ijoc.2021.1107
摘要

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
ATK20000完成签到 ,获得积分10
9秒前
13秒前
27秒前
烟花应助菜菜1994采纳,获得10
1分钟前
科研通AI5应助沙沙采纳,获得20
1分钟前
1分钟前
菜菜1994发布了新的文献求助10
1分钟前
菜菜1994完成签到,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
2分钟前
疯狂阅读发布了新的文献求助30
2分钟前
胡真发布了新的文献求助10
2分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
疯狂阅读完成签到,获得积分10
2分钟前
2分钟前
清净163完成签到,获得积分10
2分钟前
粗心的飞槐完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
清净126完成签到 ,获得积分10
3分钟前
3分钟前
ll77发布了新的文献求助10
3分钟前
lzxbarry完成签到,获得积分0
3分钟前
ll77完成签到,获得积分10
4分钟前
starleo完成签到,获得积分10
4分钟前
科研通AI5应助年轻鲜花采纳,获得10
4分钟前
poser完成签到,获得积分10
4分钟前
4分钟前
年轻鲜花发布了新的文献求助10
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
年轻鲜花完成签到,获得积分10
5分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
5分钟前
我是老大应助if奖采纳,获得10
7分钟前
7分钟前
if奖发布了新的文献求助10
7分钟前
if奖完成签到,获得积分10
7分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073483
关于积分的说明 9131061
捐赠科研通 2765122
什么是DOI,文献DOI怎么找? 1517634
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166