Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

计算机科学 设施选址问题 转运(资讯保安) 网络规划与设计 运筹学 整数规划 计算机网络 工程类 算法 计算机安全
作者
Junming Liu,Weiwei Chen,Jingyuan Yang,Hui Xiong,Can Chen
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 769-789 被引量:18
标识
DOI:10.1287/ijoc.2021.1107
摘要

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deer完成签到,获得积分10
刚刚
刚刚
充电宝应助sunstar采纳,获得10
1秒前
语雪发布了新的文献求助10
2秒前
不许焦绿o发布了新的文献求助10
3秒前
极品男大发布了新的文献求助10
3秒前
郭萌完成签到,获得积分10
3秒前
NexusExplorer应助见贤思齐采纳,获得30
3秒前
草莓软糖完成签到,获得积分10
3秒前
笨笨的兰完成签到,获得积分10
3秒前
沈惠映完成签到 ,获得积分10
4秒前
4秒前
科目三应助11采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
釉荼发布了新的文献求助10
5秒前
浊酒临江风完成签到 ,获得积分10
6秒前
6秒前
观察者小黑完成签到,获得积分10
6秒前
6秒前
TARS完成签到,获得积分10
6秒前
充电宝应助极品男大采纳,获得10
6秒前
石本松发布了新的文献求助10
7秒前
7秒前
7秒前
叶嘉琪关注了科研通微信公众号
7秒前
亓大大完成签到,获得积分10
8秒前
8秒前
爆米花应助刘研采纳,获得10
8秒前
10秒前
10秒前
可靠代丝发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助义气的雨旋采纳,获得10
11秒前
liuhaha发布了新的文献求助10
11秒前
11秒前
SciGPT应助江鑫楷采纳,获得10
11秒前
11秒前
ll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465271
求助须知:如何正确求助?哪些是违规求助? 4569649
关于积分的说明 14320326
捐赠科研通 4496051
什么是DOI,文献DOI怎么找? 2463064
邀请新用户注册赠送积分活动 1452084
关于科研通互助平台的介绍 1427253