清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

计算机科学 设施选址问题 转运(资讯保安) 网络规划与设计 运筹学 整数规划 计算机网络 工程类 算法 计算机安全
作者
Junming Liu,Weiwei Chen,Jingyuan Yang,Hui Xiong,Can Chen
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 769-789 被引量:18
标识
DOI:10.1287/ijoc.2021.1107
摘要

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐浠完成签到 ,获得积分10
5秒前
圈圈圆了发布了新的文献求助50
5秒前
光亮的冰薇完成签到 ,获得积分10
9秒前
小刘同学发布了新的文献求助10
19秒前
38秒前
圈圈圆了发布了新的文献求助30
39秒前
46秒前
土星发布了新的文献求助60
46秒前
在水一方应助圈圈圆了采纳,获得50
47秒前
cgs完成签到 ,获得积分10
1分钟前
Una完成签到,获得积分10
1分钟前
mol完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
1分钟前
学生信的大叔完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
碎梦星河发布了新的文献求助10
1分钟前
lenne完成签到,获得积分10
1分钟前
碎梦星河完成签到,获得积分10
2分钟前
mc应助小刘同学采纳,获得10
2分钟前
2分钟前
大轩完成签到 ,获得积分10
2分钟前
tszjw168完成签到 ,获得积分10
2分钟前
小刘同学完成签到,获得积分20
2分钟前
王一一完成签到,获得积分10
2分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
李木禾完成签到 ,获得积分10
2分钟前
Andy完成签到 ,获得积分20
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
Andy发布了新的文献求助10
4分钟前
4分钟前
Qian完成签到 ,获得积分10
4分钟前
清秀LL完成签到 ,获得积分10
4分钟前
leapper完成签到 ,获得积分10
4分钟前
lovelife完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
佳言2009完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438686
求助须知:如何正确求助?哪些是违规求助? 4549812
关于积分的说明 14221046
捐赠科研通 4470758
什么是DOI,文献DOI怎么找? 2450016
邀请新用户注册赠送积分活动 1440962
关于科研通互助平台的介绍 1417462