Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

计算机科学 设施选址问题 转运(资讯保安) 网络规划与设计 运筹学 整数规划 计算机网络 工程类 算法 计算机安全
作者
Junming Liu,Weiwei Chen,Jingyuan Yang,Hui Xiong,Can Chen
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 769-789 被引量:12
标识
DOI:10.1287/ijoc.2021.1107
摘要

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzw1226完成签到,获得积分10
刚刚
Ariel发布了新的文献求助10
2秒前
4秒前
5秒前
tuojiang00发布了新的文献求助30
5秒前
小张完成签到,获得积分20
5秒前
Sss发布了新的文献求助10
6秒前
小蘑菇应助黄垚采纳,获得10
6秒前
7秒前
小张发布了新的文献求助10
8秒前
怡然含桃发布了新的文献求助10
10秒前
Ava应助田野采纳,获得10
10秒前
iiio完成签到,获得积分10
10秒前
槐序深巷完成签到 ,获得积分10
11秒前
12秒前
丘比特应助tuojiang00采纳,获得10
12秒前
13秒前
14秒前
暴富完成签到,获得积分10
14秒前
在水一方应助张张采纳,获得10
15秒前
宋一发布了新的文献求助30
15秒前
无花果应助怡然含桃采纳,获得10
16秒前
16秒前
16秒前
CodeCraft应助zhxia采纳,获得10
17秒前
17秒前
18秒前
19秒前
everglow发布了新的文献求助10
19秒前
19秒前
20秒前
破风老司机完成签到,获得积分10
20秒前
ly123发布了新的文献求助10
20秒前
20秒前
搜集达人应助ssslls采纳,获得10
20秒前
情怀应助朱砂采纳,获得10
21秒前
潇潇雨歇发布了新的文献求助10
21秒前
852应助小张采纳,获得10
21秒前
乂氼完成签到,获得积分10
22秒前
多久上课发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954