已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design

计算机科学 设施选址问题 转运(资讯保安) 网络规划与设计 运筹学 整数规划 计算机网络 工程类 计算机安全 算法
作者
Junming Liu,Weiwei Chen,Jingyuan Yang,Hui Xiong,Can Chen
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 769-789 被引量:18
标识
DOI:10.1287/ijoc.2021.1107
摘要

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛益聪完成签到,获得积分10
1秒前
1秒前
奎奎完成签到 ,获得积分10
1秒前
Kiling完成签到,获得积分10
1秒前
碧蓝的之云完成签到 ,获得积分10
2秒前
无限铸海发布了新的文献求助10
2秒前
苻谷丝发布了新的文献求助10
2秒前
洋洋发布了新的文献求助10
3秒前
5秒前
5秒前
wanshang2340发布了新的文献求助10
6秒前
ding应助任小飞采纳,获得10
6秒前
文章发发发完成签到 ,获得积分10
7秒前
君子兰完成签到,获得积分10
7秒前
利物浦2024完成签到,获得积分10
8秒前
WQwsrf发布了新的文献求助10
10秒前
Hector发布了新的文献求助10
11秒前
12秒前
12秒前
屁屁屁屁屁祺完成签到 ,获得积分10
14秒前
16秒前
18秒前
DryDry完成签到 ,获得积分10
20秒前
John完成签到 ,获得积分10
20秒前
Ava应助风不定采纳,获得10
21秒前
21秒前
22秒前
23秒前
kiveeen完成签到,获得积分10
23秒前
24秒前
喵喵喵完成签到 ,获得积分10
25秒前
26秒前
26秒前
科目三应助WQwsrf采纳,获得10
27秒前
科研通AI6应助味道采纳,获得10
27秒前
许飞完成签到 ,获得积分10
28秒前
lyhwkyjy应助zhangh65采纳,获得10
28秒前
luckyseven完成签到,获得积分10
29秒前
灰色的乌完成签到 ,获得积分10
29秒前
默默襄发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482