High-efficiency degradation of bisphenol A by heterogeneous Mn–Fe layered double oxides through peroxymonosulfate activation: Performance and synergetic mechanism

催化作用 双酚A 化学 氧化还原 电子转移 激进的 降级(电信) X射线光电子能谱 浸出(土壤学) 羟基自由基 无机化学 化学工程 光化学 有机化学 土壤科学 环氧树脂 土壤水分 环境科学 工程类 电信 计算机科学
作者
Li Li,Qian Zhang,Yuecheng She,Yongbo Yu,Junming Hong
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:270: 118770-118770 被引量:56
标识
DOI:10.1016/j.seppur.2021.118770
摘要

Mn–Fe bimetal catalyst possesses excellent activation properties, and the enhancement of Mn/Fe redox cycle for electron transfer is related to the crystalline structure and surface functional groups. Therefore, material structure optimization is an effective strategy to improve its activation performance in advanced oxidation. In this study, Mn–Fe LDO catalyst with strong Mn/Fe synergistic effect was synthesized, and used for bisphenol A degradation. Under the condition of 0.4 g/L Mn-Fe LDO, 1.5 mM PMS and pH 7.0, Mn-Fe LDO/PMS system exhibited excellent degradation performance that 100% of BPA (20 mg/L) and 72.0% of COD could effective be degraded within 50 min. Five-run recycle and metal ions leaching experiments proved the excellent reusability and stability of Mn-Fe LDO. To deepen the understanding of catalytic mechanism, the synergistic effect and electron transfer between Mn and Fe were confirmed via XPS and CVs results. Moreover, the indispensable role of surface hydroxyl groups were clarified via phosphate masking experiment, ATR-FTIR and LSV analysis. The presence of Mn and Fe active sites and hydroxyl groups on Mn-Fe LDO surface could efficiently promote electron transfer, thus accelerating the redox cycles of Mn3+/Mn2+ and Fe3+/Fe2+. The generation of SO4·− and HO· as the main radicals was occurred on the surface of Mn-Fe LDO, and SO4·− played a major role during the reaction. On the basis of these experimental conclusions, the mechanisms of Mn–Fe LDO/PMS system for high-efficiency BPA degradation were proposed. GC-MS analysis was performed to detect the BPA degradation intermediates and propose the possible degradation pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助foolishbear采纳,获得10
刚刚
舒适从菡完成签到 ,获得积分20
2秒前
称心冬云完成签到,获得积分20
2秒前
3秒前
善学以致用应助花花123采纳,获得10
4秒前
NICE完成签到,获得积分10
6秒前
忆墨浅琳发布了新的文献求助10
6秒前
6秒前
7秒前
sally_5202完成签到,获得积分10
8秒前
顾矜应助易大人采纳,获得10
8秒前
9秒前
9秒前
白水完成签到,获得积分10
9秒前
10秒前
赘婿应助111123123123采纳,获得10
10秒前
小爱完成签到,获得积分10
10秒前
10秒前
曹慧完成签到,获得积分20
12秒前
12秒前
刘喵喵完成签到,获得积分20
13秒前
隐形曼青应助yyx采纳,获得10
13秒前
song发布了新的文献求助10
13秒前
皮卡啾发布了新的文献求助10
13秒前
自由人完成签到,获得积分10
13秒前
VDC应助春风十里采纳,获得30
14秒前
清和月一完成签到,获得积分10
14秒前
小张完成签到 ,获得积分10
14秒前
lvvi完成签到,获得积分20
14秒前
田様应助zhishi采纳,获得10
15秒前
顾矜应助yangyang2021采纳,获得10
15秒前
15秒前
小小发布了新的文献求助10
15秒前
Ohoooo完成签到,获得积分10
15秒前
今后应助负责流口水采纳,获得10
16秒前
16秒前
漂亮板栗完成签到 ,获得积分10
16秒前
876365401完成签到 ,获得积分10
16秒前
晴晨发布了新的文献求助10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447832
求助须知:如何正确求助?哪些是违规求助? 3043598
关于积分的说明 8995047
捐赠科研通 2732011
什么是DOI,文献DOI怎么找? 1498623
科研通“疑难数据库(出版商)”最低求助积分说明 692827
邀请新用户注册赠送积分活动 690653