清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PFA: Privacy-preserving Federated Adaptation for Effective Model Personalization

计算机科学 过度拟合 个性化 过程(计算) 机器学习 人工智能 信息隐私 原始数据 适应(眼睛) 人工神经网络 万维网 计算机安全 物理 光学 程序设计语言 操作系统
作者
Bingyan Liu,Yao Guo,Xiangqun Chen
出处
期刊:The Web Conference 被引量:26
标识
DOI:10.1145/3442381.3449847
摘要

Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy. After learning, the resulting federated model should be further personalized to each different client. While several methods have been proposed to achieve personalization, they are typically limited to a single local device, which may incur bias or overfitting since data in a single device is extremely limited. In this paper, we attempt to realize personalization beyond a single client. The motivation is that during the FL process, there may exist many clients with similar data distribution, and thus the personalization performance could be significantly boosted if these similar clients can cooperate with each other. Inspired by this, this paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results. However, the key challenge for federated adaptation is that we could not outsource any raw data from the client during adaptation, due to privacy concerns. In this paper, we propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation. PFA leverages the sparsity property of neural networks to generate privacy-preserving representations and uses them to efficiently identify clients with similar data distributions. Based on the grouping results, PFA conducts an FL process in a group-wise way on the federated model to accomplish the adaptation. For evaluation, we manually construct several practical FL datasets based on public datasets in order to simulate both the class-imbalance and background-difference conditions. Extensive experiments on these datasets and popular model architectures demonstrate the effectiveness of PFA, outperforming other state-of-the-art methods by a large margin while ensuring user privacy. We will release our code at: https://github.com/lebyni/PFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
终究是残念完成签到,获得积分10
2秒前
kenchilie完成签到 ,获得积分10
9秒前
凉面完成签到 ,获得积分10
9秒前
hff应助一个小胖子采纳,获得10
10秒前
蚂蚁踢大象完成签到 ,获得积分10
22秒前
jensen应助一个小胖子采纳,获得10
28秒前
Singularity举报小鲸鱼求助涉嫌违规
49秒前
居居侠完成签到 ,获得积分10
50秒前
一个小胖子完成签到,获得积分10
50秒前
倪小呆完成签到 ,获得积分10
1分钟前
jyy应助bzy采纳,获得30
1分钟前
路哈哈完成签到 ,获得积分10
1分钟前
路哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
泌尿小周完成签到 ,获得积分10
1分钟前
kk发布了新的文献求助20
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
aleilei完成签到 ,获得积分10
2分钟前
imkhun1021发布了新的文献求助10
2分钟前
研友_Lw7OvL完成签到 ,获得积分10
2分钟前
imkhun1021完成签到,获得积分10
2分钟前
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
2分钟前
ee_Liu完成签到,获得积分10
2分钟前
Singularity举报XudongHou求助涉嫌违规
2分钟前
qiancib202完成签到,获得积分10
3分钟前
nanfeng完成签到 ,获得积分10
3分钟前
zz完成签到 ,获得积分10
3分钟前
俊逸的白梦完成签到 ,获得积分10
3分钟前
3分钟前
was_3完成签到,获得积分10
3分钟前
3分钟前
李健的小迷弟应助宋丽薇采纳,获得10
3分钟前
liaomr完成签到 ,获得积分10
3分钟前
Hiram完成签到,获得积分10
3分钟前
3分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3088549
求助须知:如何正确求助?哪些是违规求助? 2740715
关于积分的说明 7561203
捐赠科研通 2390734
什么是DOI,文献DOI怎么找? 1267982
科研通“疑难数据库(出版商)”最低求助积分说明 613947
版权声明 598678