PFA: Privacy-preserving Federated Adaptation for Effective Model Personalization

计算机科学 过度拟合 个性化 过程(计算) 机器学习 人工智能 信息隐私 原始数据 适应(眼睛) 人工神经网络 万维网 计算机安全 操作系统 光学 物理 程序设计语言
作者
Bingyan Liu,Yao Guo,Xiangqun Chen
出处
期刊:The Web Conference 被引量:26
标识
DOI:10.1145/3442381.3449847
摘要

Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy. After learning, the resulting federated model should be further personalized to each different client. While several methods have been proposed to achieve personalization, they are typically limited to a single local device, which may incur bias or overfitting since data in a single device is extremely limited. In this paper, we attempt to realize personalization beyond a single client. The motivation is that during the FL process, there may exist many clients with similar data distribution, and thus the personalization performance could be significantly boosted if these similar clients can cooperate with each other. Inspired by this, this paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results. However, the key challenge for federated adaptation is that we could not outsource any raw data from the client during adaptation, due to privacy concerns. In this paper, we propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation. PFA leverages the sparsity property of neural networks to generate privacy-preserving representations and uses them to efficiently identify clients with similar data distributions. Based on the grouping results, PFA conducts an FL process in a group-wise way on the federated model to accomplish the adaptation. For evaluation, we manually construct several practical FL datasets based on public datasets in order to simulate both the class-imbalance and background-difference conditions. Extensive experiments on these datasets and popular model architectures demonstrate the effectiveness of PFA, outperforming other state-of-the-art methods by a large margin while ensuring user privacy. We will release our code at: https://github.com/lebyni/PFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡皮巴拉发布了新的文献求助10
刚刚
爆米花应助y123采纳,获得10
刚刚
出门见喜发布了新的文献求助10
1秒前
李健的小迷弟应助小哇采纳,获得10
1秒前
lou完成签到,获得积分10
2秒前
2秒前
慕青应助11采纳,获得10
3秒前
小二郎应助Desmend采纳,获得10
4秒前
4秒前
赖向珊发布了新的文献求助10
4秒前
ms发布了新的文献求助10
4秒前
hhkj发布了新的文献求助10
4秒前
华仔应助称心的保温杯采纳,获得10
6秒前
Owen应助yaoxm采纳,获得10
6秒前
7秒前
nanfeng发布了新的文献求助10
9秒前
Ava应助花凉采纳,获得10
9秒前
hhkj完成签到,获得积分10
10秒前
奔赴时间尽头的流萤完成签到,获得积分10
11秒前
13秒前
香蕉觅云应助wonder采纳,获得30
13秒前
领导范儿应助cc采纳,获得10
14秒前
minya完成签到,获得积分10
15秒前
2311发布了新的文献求助10
15秒前
czz完成签到,获得积分10
16秒前
汉堡包应助刘的采纳,获得30
16秒前
顺弟er发布了新的文献求助20
16秒前
YORLAN完成签到 ,获得积分10
16秒前
不吃豆皮完成签到,获得积分10
17秒前
酷酷友容给qwqe的求助进行了留言
17秒前
18秒前
yaoxm发布了新的文献求助10
19秒前
19秒前
科研小白完成签到,获得积分10
19秒前
20秒前
Wu发布了新的文献求助10
20秒前
李健应助Karol采纳,获得10
20秒前
21秒前
21秒前
一只黄完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664