已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network‐based data augmentation

软组织肉瘤 放射治疗 人工智能 计算机科学 人工神经网络 肉瘤 核医学 医学 放射科 机器学习 软组织 病理
作者
Yu Gao,Vahid Ghodrati,Anusha Kalbasi,Jie Fu,Dan Ruan,Minsong Cao,Chenyang Wang,Fritz C. Eilber,Nicholas M. Bernthal,Susan V. Bukata,Sarah Dry,Scott D. Nelson,Mitchell Kamrava,John H. Lewis,Daniel A. Low,Michael L. Steinberg,Peng Hu,Yingli Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3262-3372 被引量:16
标识
DOI:10.1002/mp.14897
摘要

Purpose The goal of this study was to predict soft tissue sarcoma response to radiotherapy (RT) using longitudinal diffusion‐weighted MRI (DWI). A novel deep‐learning prediction framework along with generative adversarial network (GAN)‐based data augmentation was investigated for the response prediction. Methods Thirty soft tissue sarcoma patients who were treated with five‐fraction hypofractionated radiation therapy (RT, 6Gy×5) underwent diffusion‐weighted MRI three times throughout the RT course using an MR‐guided radiotherapy system. Pathologic treatment effect (TE) scores, ranging from 0‐100%, were obtained from the post‐RT surgical specimen as a surrogate of patient treatment response. Patients were divided into three classes based on the TE score (TE ≤ 20%, 20% < TE < 90%, TE ≥ 90%). Apparent diffusion coefficient (ADC) maps of the tumor from the three time points were combined as 3‐channel images. An auxiliary classifier generative adversarial network (ACGAN) was trained on 20 patients to augment the data size. A total of 15,000 synthetic images were generated for each class. A prediction model based on a previously described VGG‐19 network was trained using the synthesized data, validated on five unseen validation patients, and tested on the remaining five test patients. The entire process was repeated seven times, each time shuffling the training, validation, and testing datasets such that each patient was tested at least once during the independent test stage. Prediction performance for slice‐based prediction and patient‐based prediction was evaluated. Results The average training and validation accuracies were 86.5% ± 1.6% and 84.8% ± 1.8%, respectively, indicating that the generated samples were good representations of the original patient data. Among the seven rounds of testing, slice by slice prediction accuracy ranged from 81.6% to 86.8%. The overall accuracy of the independent test sets was 83.3%. For patient‐based prediction, 80% was achieved in one round and 100% was achieved in the remaining six rounds. The mean accuracy was 97.1%. Conclusion This study demonstrated the potential to use deep learning to predict the pathologic treatment effect from longitudinal DWI. Accuracies of 83.3% and 97.1% were achieved on independent test sets for slice‐based and patient‐based prediction respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷静芹菜完成签到 ,获得积分10
1秒前
2秒前
夏天的雪花还能闯天涯吗完成签到,获得积分10
2秒前
我刷的烧饼贼亮完成签到 ,获得积分10
3秒前
手帕很忙完成签到,获得积分10
4秒前
5秒前
KK发布了新的文献求助30
5秒前
6秒前
颜千琴发布了新的文献求助10
8秒前
彤光赫显完成签到 ,获得积分10
8秒前
9秒前
lxl完成签到,获得积分20
9秒前
9秒前
Why发布了新的文献求助10
10秒前
10秒前
豆子完成签到 ,获得积分10
11秒前
无花果应助lxl采纳,获得20
14秒前
颜千琴完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
chali48完成签到 ,获得积分10
17秒前
17秒前
18秒前
香蕉觅云应助颜千琴采纳,获得10
18秒前
霍霍完成签到 ,获得积分10
22秒前
22秒前
WWXWWX完成签到,获得积分10
24秒前
红泥小火炉完成签到 ,获得积分10
24秒前
饱满芷卉发布了新的文献求助10
24秒前
852应助Anan采纳,获得10
25秒前
lxl发布了新的文献求助20
26秒前
哈哈完成签到,获得积分10
27秒前
我桽完成签到 ,获得积分10
28秒前
28秒前
xh_wzy@163.com完成签到,获得积分10
30秒前
星辰大海应助qqq采纳,获得10
31秒前
天天天才完成签到,获得积分10
32秒前
haokeyan发布了新的文献求助10
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238680
求助须知:如何正确求助?哪些是违规求助? 2884064
关于积分的说明 8232414
捐赠科研通 2552095
什么是DOI,文献DOI怎么找? 1380495
科研通“疑难数据库(出版商)”最低求助积分说明 649021
邀请新用户注册赠送积分活动 624725