Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network‐based data augmentation

软组织肉瘤 放射治疗 人工智能 计算机科学 人工神经网络 肉瘤 核医学 医学 放射科 机器学习 软组织 病理
作者
Yu Gao,Vahid Ghodrati,Anusha Kalbasi,Jie Fu,Dan Ruan,Minsong Cao,Chenyang Wang,Fritz C. Eilber,Nicholas M. Bernthal,Susan V. Bukata,Sarah Dry,Scott D. Nelson,Mitchell Kamrava,John H. Lewis,Daniel A. Low,Michael L. Steinberg,Peng Hu,Yingli Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3262-3372 被引量:20
标识
DOI:10.1002/mp.14897
摘要

Purpose The goal of this study was to predict soft tissue sarcoma response to radiotherapy (RT) using longitudinal diffusion‐weighted MRI (DWI). A novel deep‐learning prediction framework along with generative adversarial network (GAN)‐based data augmentation was investigated for the response prediction. Methods Thirty soft tissue sarcoma patients who were treated with five‐fraction hypofractionated radiation therapy (RT, 6Gy×5) underwent diffusion‐weighted MRI three times throughout the RT course using an MR‐guided radiotherapy system. Pathologic treatment effect (TE) scores, ranging from 0‐100%, were obtained from the post‐RT surgical specimen as a surrogate of patient treatment response. Patients were divided into three classes based on the TE score (TE ≤ 20%, 20% < TE < 90%, TE ≥ 90%). Apparent diffusion coefficient (ADC) maps of the tumor from the three time points were combined as 3‐channel images. An auxiliary classifier generative adversarial network (ACGAN) was trained on 20 patients to augment the data size. A total of 15,000 synthetic images were generated for each class. A prediction model based on a previously described VGG‐19 network was trained using the synthesized data, validated on five unseen validation patients, and tested on the remaining five test patients. The entire process was repeated seven times, each time shuffling the training, validation, and testing datasets such that each patient was tested at least once during the independent test stage. Prediction performance for slice‐based prediction and patient‐based prediction was evaluated. Results The average training and validation accuracies were 86.5% ± 1.6% and 84.8% ± 1.8%, respectively, indicating that the generated samples were good representations of the original patient data. Among the seven rounds of testing, slice by slice prediction accuracy ranged from 81.6% to 86.8%. The overall accuracy of the independent test sets was 83.3%. For patient‐based prediction, 80% was achieved in one round and 100% was achieved in the remaining six rounds. The mean accuracy was 97.1%. Conclusion This study demonstrated the potential to use deep learning to predict the pathologic treatment effect from longitudinal DWI. Accuracies of 83.3% and 97.1% were achieved on independent test sets for slice‐based and patient‐based prediction respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无谓发布了新的文献求助10
刚刚
KK发布了新的文献求助10
刚刚
1秒前
Tao发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
吴陈完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助wugkazh采纳,获得30
5秒前
萧寒发布了新的文献求助10
5秒前
5秒前
manbo发布了新的文献求助10
5秒前
WYP完成签到,获得积分10
5秒前
无谓完成签到,获得积分10
6秒前
6秒前
青mu发布了新的文献求助10
7秒前
现代的寻雪完成签到,获得积分10
8秒前
immortel发布了新的文献求助10
8秒前
9秒前
科研狗发布了新的文献求助10
9秒前
9秒前
10秒前
汤纪宇完成签到,获得积分10
11秒前
11秒前
11秒前
活力的小小完成签到,获得积分10
12秒前
zhy完成签到,获得积分10
13秒前
一一发布了新的文献求助10
14秒前
shukq发布了新的文献求助10
15秒前
GinT0nic发布了新的文献求助10
15秒前
感动水杯发布了新的文献求助20
15秒前
WASD完成签到,获得积分10
17秒前
liuttinn完成签到,获得积分10
18秒前
嘻嘻完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241