Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network‐based data augmentation

软组织肉瘤 放射治疗 人工智能 计算机科学 人工神经网络 肉瘤 核医学 医学 放射科 机器学习 软组织 病理
作者
Yu Gao,Vahid Ghodrati,Anusha Kalbasi,Jie Fu,Dan Ruan,Minsong Cao,Chenyang Wang,Fritz C. Eilber,Nicholas M. Bernthal,Susan V. Bukata,Sarah Dry,Scott D. Nelson,Mitchell Kamrava,John H. Lewis,Daniel A. Low,Michael L. Steinberg,Peng Hu,Yingli Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3262-3372 被引量:20
标识
DOI:10.1002/mp.14897
摘要

Purpose The goal of this study was to predict soft tissue sarcoma response to radiotherapy (RT) using longitudinal diffusion‐weighted MRI (DWI). A novel deep‐learning prediction framework along with generative adversarial network (GAN)‐based data augmentation was investigated for the response prediction. Methods Thirty soft tissue sarcoma patients who were treated with five‐fraction hypofractionated radiation therapy (RT, 6Gy×5) underwent diffusion‐weighted MRI three times throughout the RT course using an MR‐guided radiotherapy system. Pathologic treatment effect (TE) scores, ranging from 0‐100%, were obtained from the post‐RT surgical specimen as a surrogate of patient treatment response. Patients were divided into three classes based on the TE score (TE ≤ 20%, 20% < TE < 90%, TE ≥ 90%). Apparent diffusion coefficient (ADC) maps of the tumor from the three time points were combined as 3‐channel images. An auxiliary classifier generative adversarial network (ACGAN) was trained on 20 patients to augment the data size. A total of 15,000 synthetic images were generated for each class. A prediction model based on a previously described VGG‐19 network was trained using the synthesized data, validated on five unseen validation patients, and tested on the remaining five test patients. The entire process was repeated seven times, each time shuffling the training, validation, and testing datasets such that each patient was tested at least once during the independent test stage. Prediction performance for slice‐based prediction and patient‐based prediction was evaluated. Results The average training and validation accuracies were 86.5% ± 1.6% and 84.8% ± 1.8%, respectively, indicating that the generated samples were good representations of the original patient data. Among the seven rounds of testing, slice by slice prediction accuracy ranged from 81.6% to 86.8%. The overall accuracy of the independent test sets was 83.3%. For patient‐based prediction, 80% was achieved in one round and 100% was achieved in the remaining six rounds. The mean accuracy was 97.1%. Conclusion This study demonstrated the potential to use deep learning to predict the pathologic treatment effect from longitudinal DWI. Accuracies of 83.3% and 97.1% were achieved on independent test sets for slice‐based and patient‐based prediction respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助xd采纳,获得10
刚刚
1秒前
动听的柚子完成签到,获得积分10
1秒前
Vintoe发布了新的文献求助10
1秒前
学术垃圾12138完成签到,获得积分10
1秒前
2秒前
乙酰胆碱发布了新的文献求助10
2秒前
2秒前
万能图书馆应助笙黎采纳,获得10
2秒前
DR_ZHANG发布了新的文献求助10
2秒前
2秒前
czz014发布了新的文献求助10
3秒前
FashionBoy应助mm采纳,获得10
3秒前
发货后完成签到,获得积分10
4秒前
4秒前
李健的小迷弟应助zhu采纳,获得10
5秒前
anki发布了新的文献求助10
5秒前
麻瓜完成签到,获得积分10
5秒前
5秒前
哈哈发布了新的文献求助10
5秒前
幸福的冰珍完成签到,获得积分10
6秒前
果果完成签到,获得积分10
7秒前
爱笑冰海完成签到,获得积分10
7秒前
螃螃发布了新的文献求助10
7秒前
宸昶完成签到,获得积分10
8秒前
8秒前
不想看文献关注了科研通微信公众号
9秒前
10秒前
小蘑菇应助zzx采纳,获得10
10秒前
思源应助乙酰胆碱采纳,获得10
10秒前
Christina完成签到,获得积分10
10秒前
11秒前
11秒前
123发布了新的文献求助10
11秒前
12秒前
杨老师发布了新的文献求助10
12秒前
12秒前
董是鑫发布了新的文献求助10
12秒前
华志文完成签到,获得积分10
12秒前
英姑应助喜悦的铭采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745