Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network‐based data augmentation

软组织肉瘤 放射治疗 人工智能 计算机科学 人工神经网络 肉瘤 核医学 医学 放射科 机器学习 软组织 病理
作者
Yu Gao,Vahid Ghodrati,Anusha Kalbasi,Jie Fu,Dan Ruan,Minsong Cao,Chenyang Wang,Fritz C. Eilber,Nicholas M. Bernthal,Susan V. Bukata,Sarah Dry,Scott D. Nelson,Mitchell Kamrava,John H. Lewis,Daniel A. Low,Michael L. Steinberg,Peng Hu,Yingli Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3262-3372 被引量:16
标识
DOI:10.1002/mp.14897
摘要

Purpose The goal of this study was to predict soft tissue sarcoma response to radiotherapy (RT) using longitudinal diffusion‐weighted MRI (DWI). A novel deep‐learning prediction framework along with generative adversarial network (GAN)‐based data augmentation was investigated for the response prediction. Methods Thirty soft tissue sarcoma patients who were treated with five‐fraction hypofractionated radiation therapy (RT, 6Gy×5) underwent diffusion‐weighted MRI three times throughout the RT course using an MR‐guided radiotherapy system. Pathologic treatment effect (TE) scores, ranging from 0‐100%, were obtained from the post‐RT surgical specimen as a surrogate of patient treatment response. Patients were divided into three classes based on the TE score (TE ≤ 20%, 20% < TE < 90%, TE ≥ 90%). Apparent diffusion coefficient (ADC) maps of the tumor from the three time points were combined as 3‐channel images. An auxiliary classifier generative adversarial network (ACGAN) was trained on 20 patients to augment the data size. A total of 15,000 synthetic images were generated for each class. A prediction model based on a previously described VGG‐19 network was trained using the synthesized data, validated on five unseen validation patients, and tested on the remaining five test patients. The entire process was repeated seven times, each time shuffling the training, validation, and testing datasets such that each patient was tested at least once during the independent test stage. Prediction performance for slice‐based prediction and patient‐based prediction was evaluated. Results The average training and validation accuracies were 86.5% ± 1.6% and 84.8% ± 1.8%, respectively, indicating that the generated samples were good representations of the original patient data. Among the seven rounds of testing, slice by slice prediction accuracy ranged from 81.6% to 86.8%. The overall accuracy of the independent test sets was 83.3%. For patient‐based prediction, 80% was achieved in one round and 100% was achieved in the remaining six rounds. The mean accuracy was 97.1%. Conclusion This study demonstrated the potential to use deep learning to predict the pathologic treatment effect from longitudinal DWI. Accuracies of 83.3% and 97.1% were achieved on independent test sets for slice‐based and patient‐based prediction respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幻梦如歌发布了新的文献求助10
刚刚
Iridesent0v0完成签到,获得积分10
刚刚
1秒前
129600完成签到,获得积分10
2秒前
2秒前
2秒前
无花果应助小邸采纳,获得10
2秒前
攒星星完成签到,获得积分10
2秒前
goufufu发布了新的文献求助20
3秒前
3秒前
香蕉觅云应助小秦采纳,获得10
3秒前
ku_zhang发布了新的文献求助10
4秒前
科研通AI6应助科研白白采纳,获得30
4秒前
简单的月饼完成签到 ,获得积分10
4秒前
5秒前
nanaki发布了新的文献求助10
5秒前
5秒前
幻梦如歌完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助129600采纳,获得10
6秒前
lyh完成签到,获得积分10
6秒前
sunny完成签到,获得积分10
6秒前
6秒前
我是老大应助勤恳的语蝶采纳,获得10
6秒前
7秒前
以菱完成签到 ,获得积分10
7秒前
虚幻芷文完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
悦耳从寒完成签到,获得积分10
7秒前
星辰大海应助zjl采纳,获得10
8秒前
lms0214完成签到,获得积分20
8秒前
游01发布了新的文献求助10
8秒前
8秒前
Owen应助直率的不惜采纳,获得10
8秒前
现代的妍发布了新的文献求助20
9秒前
x其妙发布了新的文献求助50
9秒前
可心先生发布了新的文献求助10
9秒前
锅实验完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588209
求助须知:如何正确求助?哪些是违规求助? 4003804
关于积分的说明 12395301
捐赠科研通 3680371
什么是DOI,文献DOI怎么找? 2028625
邀请新用户注册赠送积分活动 1062121
科研通“疑难数据库(出版商)”最低求助积分说明 948094