Underfill Flow in Flip-Chip Encapsulation Process: A Review

倒装芯片 空隙(复合材料) 机械工程 小型化 计算机科学 材料科学 毛细管作用 参数统计 炸薯条 可靠性工程 工程类 纳米技术 复合材料 电信 胶粘剂 统计 图层(电子) 数学
作者
Fei Chong Ng,Aizat Abas
出处
期刊:Journal of Electronic Packaging [ASME International]
卷期号:144 (1) 被引量:22
标识
DOI:10.1115/1.4050697
摘要

Abstract The scope of review of this paper focused on the precuring underfilling flow stage of encapsulation process. A total of 80 related works has been reviewed and being classified into process type, method employed, and objective attained. Statistically showed that the conventional capillary is the most studied underfill process, while the numerical simulation was mainly adopted. Generally, the analyses on the flow dynamic and distribution of underfill fluids in the bump array aimed for the filling time determination as well as the predictions of void occurrence. Parametric design optimization was subsequently conducted to resolve the productivity issue of long filling time and reliability issue of void occurrence. The bump pitch was found to the most investigated parameter, consistent to the miniaturization demand. To enrich the design versatility and flow visualization aspects, experimental test vehicle was innovated using imitated chip and replacement fluid, or even being scaled-up. Nonetheless, the analytical filling time models became more accurate and sophiscasted over the years, despite still being scarce in number. With the technological advancement on analysis tools and further development of analytic skills, it was believed that the future researches on underfill flow will become more comprehensive, thereby leading to the production of better packages in terms of manufacturing feasibility, performances, and reliability. Finally, few potential future works were recommended, for instance, microscopic analysis on the bump–fluid interaction, consideration of filler particles, and incorporation of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观小蕊发布了新的文献求助10
刚刚
刚刚
2秒前
隐形曼青应助kk采纳,获得10
2秒前
xx发布了新的文献求助10
3秒前
愉快松鼠发布了新的文献求助10
3秒前
5秒前
清脆半双发布了新的文献求助10
5秒前
SciGPT应助小台农采纳,获得10
5秒前
7秒前
67完成签到,获得积分10
7秒前
hanghang完成签到 ,获得积分10
7秒前
8秒前
9秒前
Dasiy完成签到,获得积分20
9秒前
CipherSage应助陈曦采纳,获得10
9秒前
10秒前
10秒前
缥缈耷发布了新的文献求助10
11秒前
乐观小蕊完成签到,获得积分10
11秒前
11秒前
Hello应助愉快松鼠采纳,获得10
11秒前
哭泣大米发布了新的文献求助10
12秒前
斯文败类应助xx采纳,获得10
12秒前
wuming发布了新的文献求助30
14秒前
14秒前
迷人的跳跳糖关注了科研通微信公众号
14秒前
14秒前
感性的曼凝完成签到,获得积分10
14秒前
15秒前
汉堡包应助轻松的幻天采纳,获得10
15秒前
深情安青应助木子李采纳,获得30
15秒前
15秒前
15秒前
16秒前
研猫发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071903
求助须知:如何正确求助?哪些是违规求助? 2725788
关于积分的说明 7491264
捐赠科研通 2373147
什么是DOI,文献DOI怎么找? 1258476
科研通“疑难数据库(出版商)”最低求助积分说明 610277
版权声明 596944