去相
激光阈值
物理
离子
原子物理学
激光器
电离
光学
量子力学
作者
Hongqiang Xie,Hongbin Lei,Guihua Liu,Jinping Yao,Qian Zhang,Xiaowei Wang,Jianlin Zhao,Zhiming Chen,Ya Cheng,Zengxiu Zhao
出处
期刊:Photonics Research
[The Optical Society]
日期:2021-09-24
卷期号:9 (10): 2046-2046
被引量:8
摘要
Molecular ions, produced via ultrafast ionization, can be quantum emitters with the aid of resonant electronic couplings, which makes them the ideal candidates to study strong-field quantum optics. In this work, we experimentally and numerically investigate the necessary condition for observing a collective emission arising from macroscopic quantum polarization in a population-inverted N 2 + gain system, uncovering how the individual ionic emitters proceed into a coherent collection within hundreds of femtoseconds. Our results show that for a relatively high-gain case, the collective emission behaviors can be readily initiated for all the employed triggering pulse area. However, for a low-gain case, the superradiant amplification is quenched since the building time of macroscopic interionic quantum coherence exceeds the dipole dephasing time, in which situation the seed amplification and free induction decay play an essential role. These findings not only clarify the contentious key issue regarding to the amplification mechanism of N 2 + lasing but also show the unique characteristics of ultrashort laser-induced amplification in a molecular ion system where both the microscopic and macroscopic quantum coherence might be present.
科研通智能强力驱动
Strongly Powered by AbleSci AI