A Novel Server-side Aggregation Strategy for Federated Learning in Non-IID situations

MNIST数据库 趋同(经济学) 计算机科学 机器学习 人工智能 联合学习 服务器 分布式计算 深度学习 云计算 边缘计算 数据挖掘 计算机网络 经济增长 经济
作者
Jianhang Xiao,Chunhui Du,Zijing Duan,Wei Guo
出处
期刊:International Symposium on Parallel and Distributed Computing 被引量:11
标识
DOI:10.1109/ispdc52870.2021.9521631
摘要

Federated learning has been a promising distributed machine learning approach in many fields like e-economic, autodriving and medical imaging for its privacy-aware manner. However, researchers have discovered that the performance of traditional federated learning approaches such as Federated Averaging (FEDAVG) declines extremely under Non-Independent and Identical (Non-IID) situations. We observed that part of the reason is the improper way of traditional federated learning’s server-side aggregation method.The contributions of clients in federated learning can be distinguished by their trained models’ validated accuracies. Based on that observation, we proposed a new federated learning algorithm, Accuracy Based Averaging (ABAVG), which improves the server-side aggregation method of traditional federated learning so that it can accelerate the convergence speed of federated learning in Non-IID situations. We extensively evaluate our proposed algorithm with FEDAVG as a baseline and we experiment on various Non-IID conditions to demonstrate the robust of our proposed algorithm. Experimental results show that the convergence speed averagely increased by 47% in Mnist dataset, 59% in Fashion-Mnist dataset and 33% in CIFAR-10 dataset in different data distributions by ABAVG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
骆闻发布了新的文献求助10
6秒前
zdd关闭了zdd文献求助
6秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
小王应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
风清扬应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
10秒前
中和皇极应助111采纳,获得10
10秒前
明亮芯发布了新的文献求助10
10秒前
岳岳岳完成签到 ,获得积分10
11秒前
平淡的亦丝完成签到,获得积分10
12秒前
林正心发布了新的文献求助20
13秒前
闪闪静槐完成签到,获得积分10
13秒前
Lucas应助小吴同志采纳,获得10
13秒前
zyj发布了新的文献求助10
14秒前
15秒前
15秒前
蓝蜻蜓发布了新的文献求助10
17秒前
17秒前
烟花应助皮崇知采纳,获得10
18秒前
18秒前
大椒完成签到 ,获得积分10
19秒前
19秒前
Aeae发布了新的文献求助10
20秒前
20秒前
xuyang完成签到,获得积分20
21秒前
21秒前
23秒前
23秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662