The Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict the Overall Survival of Advanced Non-Small Cell Lung Cancer Patients

医学 内科学 接收机工作特性 比例危险模型 肺癌 总体生存率 单变量 单变量分析 肿瘤科 多元统计 生存分析 多元分析 数学 统计
作者
Shun Matsuura,Keisuke Morikawa,Yutaro Ito,Tsutomu Kubota,Koshiro Ichijo,Eisuke Mochizuki,Nobutake Akiyama,Masahiro Uehara,Masanori Harada,Masaru Tsukui,Naoki Koshimizu
出处
期刊:Nutrition and Cancer [Routledge]
卷期号:74 (5): 1606-1613 被引量:10
标识
DOI:10.1080/01635581.2021.1960387
摘要

We aimed to assess the prognostic and predictive significance of pretreatment Geriatric Nutritional Risk Index (GNRI) and Prognostic Nutritional Index (PNI) measurements on advanced non-small cell lung cancer (NSCLC) patients treated with first-line therapy. Patients with advanced NSCLC treated between February 2014 and August 2020 were retrospectively analyzed. The optimal cutoff points for GNRI and PNI were measured with receiver operating characteristic (ROC) curve analysis according to overall survival (OS). The predictive factors for progression-free survival (PFS) and OS were evaluated with univariate and multivariate analyses via the Cox hazards regression. A total of 160 patients were included in the study. Significant differences between the low and high-GNRI or PNI groups were found regarding ECOG-PS. The low-GNRI and low-PNI groups had significantly shorter PFS and OS than the high-GNRI and high-PNI groups. A multivariate analysis using a Cox regression model revealed that the high-GNRI group was an independent prognostic factor of OS and PFS, and the PNI group was an independent prognostic factor of OS. Pretreatment GNRI and PNI may therefore be a potential effective predictor of the survival of advanced NSCLC patients undergoing first-line treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助小龙仔123采纳,获得10
刚刚
科研通AI2S应助Rabbit采纳,获得10
2秒前
2秒前
小地蛋完成签到 ,获得积分10
3秒前
TrungHieuPham完成签到,获得积分10
4秒前
淡然冬灵应助lengyan采纳,获得20
6秒前
念梦完成签到,获得积分10
6秒前
6秒前
安雯完成签到,获得积分10
8秒前
陈__发布了新的文献求助10
8秒前
Green完成签到,获得积分10
9秒前
三颗板牙完成签到,获得积分10
9秒前
lcy完成签到 ,获得积分10
11秒前
汕头凯奇完成签到,获得积分10
13秒前
安雯发布了新的文献求助100
13秒前
斯文败类应助陈__采纳,获得10
15秒前
大个应助小李叭叭采纳,获得10
16秒前
专业美女制造完成签到,获得积分10
16秒前
冷酷太清完成签到,获得积分10
17秒前
唐唐完成签到 ,获得积分10
18秒前
SciGPT应助幽默科研人采纳,获得10
18秒前
霹雳小土豆-完成签到,获得积分0
18秒前
小路小路一夜暴富完成签到,获得积分10
19秒前
沫柠完成签到 ,获得积分10
20秒前
满意的寒凝完成签到 ,获得积分10
20秒前
科研通AI5应助妖风采纳,获得30
21秒前
领导范儿应助科研通管家采纳,获得30
21秒前
大模型应助科研通管家采纳,获得30
21秒前
幸福时光应助科研通管家采纳,获得10
21秒前
研友_LpQGjn完成签到 ,获得积分10
21秒前
mj789应助科研通管家采纳,获得20
21秒前
科目三应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
活力山蝶应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得30
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965831
求助须知:如何正确求助?哪些是违规求助? 3511154
关于积分的说明 11156535
捐赠科研通 3245761
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268