已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma

医学 队列 百分位 接收机工作特性 腺癌 肺癌 曲线下面积 回顾性队列研究 放射科 内科学 肿瘤科 癌症 统计 数学
作者
Li-Wei Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Shun‐Mao Yang,Hao-Jen Wang,Yi‐Chang Chen,Hsin‐Yi Chen,Yu‐Hsuan Hu,Chi-En Lee,Jin‐Shing Chen,Yeun‐Chung Chang,Chung‐Ming Chen
出处
期刊:The Annals of Thoracic Surgery [Elsevier BV]
卷期号:114 (3): 999-1006 被引量:13
标识
DOI:10.1016/j.athoracsur.2021.07.075
摘要

We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary).We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2.Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively.The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的凛完成签到,获得积分10
刚刚
地泽万物发布了新的文献求助10
1秒前
LaffiteElla发布了新的文献求助10
1秒前
wanci应助hanleiharry1采纳,获得10
2秒前
3秒前
在水一方应助摸摸采纳,获得10
4秒前
FashionBoy应助Lu采纳,获得10
4秒前
Xw发布了新的文献求助10
4秒前
5秒前
HZ发布了新的文献求助10
5秒前
7秒前
congenialboy发布了新的文献求助10
8秒前
桐桐应助标致的问晴采纳,获得10
11秒前
研究牛王发布了新的文献求助10
11秒前
nito完成签到,获得积分10
11秒前
13秒前
13秒前
16秒前
16秒前
16秒前
17秒前
18秒前
Lu发布了新的文献求助10
18秒前
西哥完成签到 ,获得积分10
19秒前
摸摸完成签到,获得积分20
20秒前
20秒前
21秒前
猪猪hero应助hanleiharry1采纳,获得10
22秒前
dd发布了新的文献求助10
23秒前
摸摸发布了新的文献求助10
23秒前
肃肃其羽完成签到 ,获得积分10
23秒前
Owen应助研究牛王采纳,获得10
24秒前
25秒前
Rondab应助鞑靼采纳,获得10
26秒前
李健的小迷弟应助chang采纳,获得10
26秒前
三井库里完成签到,获得积分10
27秒前
zplease完成签到,获得积分10
27秒前
27秒前
sycsyc完成签到,获得积分10
28秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190