Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma

医学 队列 百分位 接收机工作特性 腺癌 肺癌 曲线下面积 回顾性队列研究 放射科 内科学 肿瘤科 癌症 统计 数学
作者
Li-Wei Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Shun‐Mao Yang,Hao-Jen Wang,Yi‐Chang Chen,Hsin‐Yi Chen,Yu‐Hsuan Hu,Chi-En Lee,Jin‐Shing Chen,Yeun‐Chung Chang,Chung‐Ming Chen
出处
期刊:The Annals of Thoracic Surgery [Elsevier BV]
卷期号:114 (3): 999-1006 被引量:13
标识
DOI:10.1016/j.athoracsur.2021.07.075
摘要

We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary).We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2.Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively.The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Culto完成签到,获得积分10
1秒前
2秒前
JIE完成签到,获得积分10
2秒前
houjibofa发布了新的文献求助10
3秒前
田様应助幽默平安采纳,获得10
6秒前
可爱的函函应助刘小小123采纳,获得10
7秒前
瓣落的碎梦完成签到,获得积分0
9秒前
善学以致用应助momo采纳,获得10
10秒前
孝顺的觅风完成签到 ,获得积分10
10秒前
12秒前
刘小小123发布了新的文献求助10
15秒前
健壮的面包完成签到,获得积分10
15秒前
18秒前
孙燕应助科研界的恩希玛采纳,获得20
21秒前
22秒前
迷茫的一代完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
xingxingwang完成签到,获得积分10
25秒前
春来发布了新的文献求助30
26秒前
27秒前
27秒前
刘小小123完成签到,获得积分20
27秒前
xzy完成签到 ,获得积分10
28秒前
搜集达人应助无情向梦采纳,获得10
30秒前
阿伟1999发布了新的文献求助50
32秒前
momo发布了新的文献求助10
33秒前
li完成签到,获得积分10
34秒前
如此发布了新的文献求助10
36秒前
37秒前
赵静1234567890完成签到,获得积分10
37秒前
xxxllllll发布了新的文献求助10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
41秒前
乐乐应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
YamDaamCaa应助科研通管家采纳,获得50
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
42秒前
爆米花应助科研通管家采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173