Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma

医学 队列 百分位 接收机工作特性 腺癌 肺癌 曲线下面积 回顾性队列研究 放射科 内科学 肿瘤科 癌症 统计 数学
作者
Li-Wei Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Shun‐Mao Yang,Hao-Jen Wang,Yi‐Chang Chen,Hsin‐Yi Chen,Yu‐Hsuan Hu,Chi-En Lee,Jin‐Shing Chen,Yeun‐Chung Chang,Chung‐Ming Chen
出处
期刊:The Annals of Thoracic Surgery [Elsevier]
卷期号:114 (3): 999-1006 被引量:13
标识
DOI:10.1016/j.athoracsur.2021.07.075
摘要

We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary).We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2.Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively.The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhzz发布了新的文献求助10
1秒前
坚定的雁完成签到 ,获得积分10
2秒前
3秒前
两先生完成签到 ,获得积分10
3秒前
豆dou发布了新的文献求助10
3秒前
丘比特应助SS采纳,获得10
4秒前
4秒前
瑶一瑶完成签到,获得积分10
4秒前
接受所有饼干完成签到,获得积分10
4秒前
富贵儿完成签到,获得积分10
5秒前
MHB应助Khr1stINK采纳,获得10
5秒前
cinderella完成签到,获得积分10
6秒前
7秒前
lin发布了新的文献求助10
8秒前
tmpstlml完成签到,获得积分10
8秒前
LUNWENREQUEST完成签到,获得积分20
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得30
9秒前
111发布了新的文献求助10
10秒前
keyanlv完成签到,获得积分10
10秒前
富贵儿发布了新的文献求助10
12秒前
冯度翩翩完成签到,获得积分10
12秒前
sweetbearm应助健壮的涑采纳,获得10
12秒前
村里傻小子完成签到,获得积分20
12秒前
田様应助Khr1stINK采纳,获得10
13秒前
傲娇的凡旋应助小周采纳,获得10
14秒前
潇潇潇完成签到 ,获得积分10
14秒前
15秒前
英俊的铭应助XShu采纳,获得10
16秒前
Hello应助一只大肥猫采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808