Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma

医学 队列 百分位 接收机工作特性 腺癌 肺癌 曲线下面积 回顾性队列研究 放射科 内科学 肿瘤科 癌症 统计 数学
作者
Li-Wei Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Shun‐Mao Yang,Hao-Jen Wang,Yi‐Chang Chen,Hsin‐Yi Chen,Yu‐Hsuan Hu,Chi-En Lee,Jin‐Shing Chen,Yeun‐Chung Chang,Chung‐Ming Chen
出处
期刊:The Annals of Thoracic Surgery [Elsevier]
卷期号:114 (3): 999-1006 被引量:13
标识
DOI:10.1016/j.athoracsur.2021.07.075
摘要

We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary).We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2.Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively.The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢迎波发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
赘婿应助一呦呦采纳,获得10
2秒前
2秒前
英俊的铭应助zzd采纳,获得10
3秒前
3秒前
yuxiaoye应助辽宁科技大学采纳,获得10
4秒前
郎中张先森完成签到,获得积分10
5秒前
5秒前
lili完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Chaha完成签到,获得积分10
7秒前
水瓶完成签到,获得积分10
8秒前
9秒前
lanlan发布了新的文献求助10
10秒前
高胖完成签到 ,获得积分10
10秒前
OFish发布了新的文献求助10
11秒前
传奇3应助司马逍遥采纳,获得10
11秒前
11秒前
小灰灰完成签到 ,获得积分10
12秒前
优翎完成签到,获得积分10
12秒前
meiguohuo发布了新的文献求助10
13秒前
bobo发布了新的文献求助10
14秒前
初荣发布了新的文献求助10
15秒前
优翎发布了新的文献求助10
15秒前
OFish完成签到,获得积分10
17秒前
啊标完成签到,获得积分10
17秒前
饱满的海秋完成签到,获得积分10
18秒前
烟花应助dongyi采纳,获得10
18秒前
铠甲勇士完成签到,获得积分10
19秒前
小明应助会撒娇的志泽采纳,获得10
20秒前
李健应助会撒娇的志泽采纳,获得10
20秒前
wxyshare应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得100
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384400
求助须知:如何正确求助?哪些是违规求助? 4507243
关于积分的说明 14027286
捐赠科研通 4416893
什么是DOI,文献DOI怎么找? 2426157
邀请新用户注册赠送积分活动 1418940
关于科研通互助平台的介绍 1397276