亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma

医学 队列 百分位 接收机工作特性 腺癌 肺癌 曲线下面积 回顾性队列研究 放射科 内科学 肿瘤科 癌症 统计 数学
作者
Li-Wei Chen,Mong‐Wei Lin,Min‐Shu Hsieh,Shun‐Mao Yang,Hao-Jen Wang,Yi‐Chang Chen,Hsin‐Yi Chen,Yu‐Hsuan Hu,Chi-En Lee,Jin‐Shing Chen,Yeun‐Chung Chang,Chung‐Ming Chen
出处
期刊:The Annals of Thoracic Surgery [Elsevier BV]
卷期号:114 (3): 999-1006 被引量:13
标识
DOI:10.1016/j.athoracsur.2021.07.075
摘要

We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary).We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2.Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively.The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山城小丸完成签到,获得积分10
刚刚
吴嘉俊发布了新的文献求助10
1秒前
2秒前
小丸子完成签到 ,获得积分10
3秒前
彩色橘子完成签到 ,获得积分10
4秒前
7秒前
yyf251发布了新的文献求助10
12秒前
阿金啊完成签到,获得积分10
12秒前
阿金啊发布了新的文献求助30
15秒前
cyy完成签到 ,获得积分10
23秒前
26秒前
27秒前
luang完成签到,获得积分10
29秒前
个性慕青完成签到 ,获得积分10
33秒前
丘丘完成签到,获得积分10
33秒前
RRRZZ完成签到 ,获得积分10
41秒前
习习完成签到,获得积分10
41秒前
所所应助小真白采纳,获得10
42秒前
科研通AI2S应助内向的小脑采纳,获得10
45秒前
mingli的tau发布了新的文献求助10
50秒前
科研通AI5应助LJ_scholar采纳,获得10
53秒前
56秒前
yf完成签到,获得积分10
56秒前
yf发布了新的文献求助10
1分钟前
七草肃完成签到,获得积分10
1分钟前
Hexagram完成签到 ,获得积分10
1分钟前
Jasper应助ceeray23采纳,获得20
1分钟前
张牧之完成签到 ,获得积分10
1分钟前
哈哈哈大赞完成签到,获得积分10
1分钟前
打打应助yf采纳,获得10
1分钟前
1分钟前
YoungJC66发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
轻松的惜芹应助3719left采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532068
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216