Logistic Regression in Clinical Studies

逻辑回归 置信区间 优势比 逻辑模型树 罗伊特 物流配送 可能性 回归诊断 回归分析 二项回归 有序逻辑 多项式logistic回归 计量经济学 统计 数学 多项式回归
作者
Emily C. Zabor,C.A. Reddy,Rahul D. Tendulkar,Sujata Patil
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (2): 271-277 被引量:85
标识
DOI:10.1016/j.ijrobp.2021.08.007
摘要

•A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software. •A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TUTU完成签到 ,获得积分10
2秒前
左右完成签到 ,获得积分10
3秒前
楚寅完成签到 ,获得积分10
10秒前
奇奇怪怪的大鱼完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
16秒前
出厂价完成签到,获得积分10
16秒前
呆萌的蚂蚁完成签到 ,获得积分10
16秒前
董耀文完成签到,获得积分10
19秒前
氟锑酸完成签到 ,获得积分10
19秒前
lunhui6453完成签到 ,获得积分10
21秒前
Yi完成签到,获得积分10
22秒前
王继完成签到,获得积分10
22秒前
22秒前
卡片完成签到,获得积分10
24秒前
虚幻念寒完成签到 ,获得积分10
24秒前
胡思乱想完成签到,获得积分10
26秒前
27秒前
hahaha6789y完成签到,获得积分10
27秒前
cl完成签到,获得积分10
29秒前
sheep完成签到,获得积分10
30秒前
maybe完成签到,获得积分10
30秒前
秦含光完成签到,获得积分10
30秒前
Mo完成签到,获得积分10
30秒前
hahaha2完成签到,获得积分10
31秒前
spider534完成签到,获得积分10
31秒前
徐彬荣完成签到,获得积分10
31秒前
simon666完成签到,获得积分10
31秒前
BlueKitty完成签到,获得积分10
33秒前
Adamcssy19完成签到,获得积分10
34秒前
量子咸鱼K完成签到,获得积分10
34秒前
霡霂完成签到,获得积分10
34秒前
852应助科研通管家采纳,获得10
34秒前
34秒前
PaperCrane完成签到,获得积分10
34秒前
hahaha1完成签到,获得积分10
34秒前
surlamper完成签到,获得积分10
35秒前
曹广秀完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
40秒前
雪雪完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418566
求助须知:如何正确求助?哪些是违规求助? 4534257
关于积分的说明 14143326
捐赠科研通 4450472
什么是DOI,文献DOI怎么找? 2441268
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410417