Logistic Regression in Clinical Studies

逻辑回归 置信区间 优势比 逻辑模型树 罗伊特 物流配送 可能性 回归诊断 回归分析 二项回归 有序逻辑 多项式logistic回归 计量经济学 统计 数学 多项式回归
作者
Emily C. Zabor,C.A. Reddy,Rahul D. Tendulkar,Sujata Patil
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:112 (2): 271-277 被引量:85
标识
DOI:10.1016/j.ijrobp.2021.08.007
摘要

•A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software. •A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电池小能手完成签到,获得积分20
1秒前
A2004发布了新的文献求助10
1秒前
2秒前
2秒前
yorushika完成签到,获得积分20
2秒前
脑洞疼应助Dreamchaser采纳,获得10
2秒前
3秒前
3秒前
3秒前
浮游应助li采纳,获得10
3秒前
3秒前
英俊的铭应助li采纳,获得10
3秒前
wz完成签到,获得积分10
3秒前
寻找布冯发布了新的文献求助10
4秒前
清鱼坊发布了新的文献求助10
5秒前
6秒前
钰曦关注了科研通微信公众号
6秒前
ccc发布了新的文献求助10
6秒前
双儿完成签到,获得积分10
7秒前
小陈1122发布了新的文献求助10
7秒前
cc完成签到,获得积分20
7秒前
迎风发布了新的文献求助10
7秒前
赘婿应助落尘采纳,获得10
7秒前
小蘑菇应助酷酷妙海采纳,获得10
7秒前
7秒前
XXY关闭了XXY文献求助
7秒前
10秒前
10秒前
Murphy_H完成签到,获得积分10
10秒前
SciGPT应助Nuyoah采纳,获得10
11秒前
专一的自行车完成签到,获得积分10
11秒前
王焕玉发布了新的文献求助10
12秒前
safari完成签到 ,获得积分10
13秒前
竹马道完成签到,获得积分10
14秒前
17秒前
18秒前
18秒前
Lc完成签到,获得积分10
18秒前
20秒前
迎风完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633897
求助须知:如何正确求助?哪些是违规求助? 4029610
关于积分的说明 12467882
捐赠科研通 3715936
什么是DOI,文献DOI怎么找? 2050448
邀请新用户注册赠送积分活动 1082017
科研通“疑难数据库(出版商)”最低求助积分说明 964216