Logistic Regression in Clinical Studies

逻辑回归 置信区间 优势比 逻辑模型树 罗伊特 物流配送 可能性 回归诊断 回归分析 二项回归 有序逻辑 多项式logistic回归 计量经济学 统计 数学 多项式回归
作者
Emily C. Zabor,C.A. Reddy,Rahul D. Tendulkar,Sujata Patil
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (2): 271-277 被引量:26
标识
DOI:10.1016/j.ijrobp.2021.08.007
摘要

•A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software. •A logistic regression model is used when the outcome of interest is binary. The term “logistic” refers to the underlying “logit” (log odds) function that is used to model the binary outcome. •Odds ratios are produced from a logistic regression model, and have a useful interpretation. •Tips, tricks and concepts used to fit logistic regression models are similar to those used in linear regression models. •Modeling building that is knowledge-based rather than automatic is preferred in most applications of logistic regression. •A logistic regression model that is overparameterized (ie too many variables for too few events) can result in odds ratios that are implausibly large and confidence intervals that are wide and uninterpretable. These types of “overfitted” models should be avoided. •Logistic regression models can be fit using most standard statistical software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZSZ完成签到,获得积分10
1秒前
1秒前
2秒前
乐乐应助WKY采纳,获得10
2秒前
深情安青应助称心曼安采纳,获得10
2秒前
科研通AI2S应助念与惜采纳,获得10
3秒前
3秒前
3秒前
牛蛙煲发布了新的文献求助10
3秒前
SYX发布了新的文献求助10
4秒前
黎小静发布了新的文献求助10
4秒前
4秒前
Poik完成签到,获得积分10
4秒前
dancingidam发布了新的文献求助10
5秒前
小稻草人完成签到,获得积分10
5秒前
5秒前
msd2phd完成签到,获得积分10
6秒前
6秒前
小蘑菇应助落雁沙采纳,获得10
6秒前
0029完成签到,获得积分10
6秒前
6秒前
燕十三发布了新的文献求助10
7秒前
幸福海亦完成签到,获得积分10
8秒前
8秒前
林夏果发布了新的文献求助10
8秒前
thw发布了新的文献求助10
9秒前
10秒前
黎小静完成签到,获得积分10
10秒前
10秒前
11秒前
勤劳茗发布了新的文献求助10
11秒前
领导范儿应助Emiya采纳,获得10
11秒前
12秒前
huangnvshi发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
jia发布了新的文献求助10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721