Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation

计算机科学 像素 人工智能 深度学习 航程(航空) 计算机视觉 算法 单调函数 数学 数学分析 复合材料 材料科学
作者
Chongyi Li,Chunle Guo,Change Loy Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:375
标识
DOI:10.1109/tpami.2021.3063604
摘要

This paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or even unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. We further present an accelerated and light version of Zero-DCE, called Zero-DCE++, that takes advantage of a tiny network with just 10K parameters. Zero-DCE++ has a fast inference speed (1000/11 FPS on a single GPU/CPU for an image of size 1200×900×3) while keeping the enhancement performance of Zero-DCE. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our method to face detection in the dark are discussed. The source code is made publicly available at https://li-chongyi.github.io/Proj_Zero-DCE++.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮弯弯啊完成签到,获得积分10
1秒前
Jane发布了新的文献求助10
1秒前
顾矜应助cyanpomelo采纳,获得10
2秒前
小朱完成签到,获得积分10
2秒前
小马甲应助梅子采纳,获得10
2秒前
2秒前
2秒前
英俊的铭应助韩星采纳,获得10
3秒前
劲秉应助无言采纳,获得10
4秒前
Aurora发布了新的文献求助20
4秒前
耿耿发布了新的文献求助10
4秒前
5秒前
309175700@qq.com完成签到,获得积分10
5秒前
ocean完成签到,获得积分10
6秒前
Happyrogue完成签到,获得积分10
6秒前
7秒前
大模型应助愤怒的树叶采纳,获得30
8秒前
彭于晏应助小雨点采纳,获得10
8秒前
8秒前
9秒前
yanzu发布了新的文献求助10
9秒前
小二郎应助Komorebi采纳,获得10
9秒前
9秒前
灰灰灰完成签到,获得积分10
10秒前
肯努力完成签到,获得积分10
10秒前
11秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
772829完成签到 ,获得积分10
14秒前
T012发布了新的文献求助10
14秒前
毒扁豆碱发布了新的文献求助10
15秒前
zljsnoopy发布了新的文献求助10
15秒前
zcc111发布了新的文献求助10
15秒前
15秒前
今后应助耿耿采纳,获得10
15秒前
TANG发布了新的文献求助10
16秒前
16秒前
雪山飞龙发布了新的文献求助10
16秒前
科研虫完成签到,获得积分20
17秒前
1122完成签到,获得积分20
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352025
求助须知:如何正确求助?哪些是违规求助? 2977300
关于积分的说明 8678744
捐赠科研通 2658317
什么是DOI,文献DOI怎么找? 1455657
科研通“疑难数据库(出版商)”最低求助积分说明 674014
邀请新用户注册赠送积分活动 664565