This project was designed to develop acid-stable PGM-free transition metal oxide oxygen reduction reaction (ORR) electrocatalysts to meet or exceed the performance and durability of the DOE 2020 Technical Targets for platinum-group metal (PGM) free electrocatalysts from first-principles to incorporation into membrane-electrode assemblies (MEAs) for polymer electrolyte membrane (PEM) fuel cells. The planned project was to accomplish this goal with a multi-step approach: 1) materials modeling and experimental screening to identify acid-stable oxides with high ORR activity, 2) optimization of catalyst particle size and catalyst/carbon/ionomer catalyst layer composition, 3) fabrication of MEAs for performance and durability testing. During the course of this project: 1) acid-stability descriptors were developed for manganese oxides; 2) a family of acid-stable multicomponent oxides based on antimony were developed; 3) a flexible synthesis for the formation of nanocrystalline nonstoichiometric oxides was developed; 4) limited ORR activity but modest and improving oxygen evolution reaction (OER) activity was measured for multicomponent antimony oxides. The project was programmed into five technical tasks: The development of acid-stable ORR electrocatalytic oxides through 1) identification and optimization of acid-stable oxide compositions, and 2) electrochemical characterization; 3) optimization of catalyst layer composition for MEAs using identified ORR electrocatalysts; 4) MEA fabrication and performance testing to result in performance of 44 mA-cm-2 at 0.9 V vs. RHE; and 5) accelerated-stress testing of optimized MEAs. Because no acid-stable oxide was identified with the requisite activity for ORR (4.4 µA-cm-2oxide intrinsic activity at 0.9 V vs. RHE) within the time and budget allotted in Tasks 1 and 2, the project was halted at the end of phase 1, with no activity in Tasks 3-5. The research output, while not succeeding in developing ORR electrocatalysts, advanced the development of acid-stable oxide materials, showing potential for further improvement as OER electrocatalysts.