A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data

营养不良 医学 观察研究 浪费的 聚类分析 人口 多项式logistic回归 逻辑回归 机器学习 星团(航天器) 人工智能 数据挖掘 内科学 环境卫生 计算机科学 程序设计语言
作者
Liangyu Yin,Chunhua Song,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Wei Li,Mei Yang,Jiami Yu,Xiaojie Wang,Xing Liu,Shoumei Yang,Zheng Zuo
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:40 (8): 4958-4970 被引量:39
标识
DOI:10.1016/j.clnu.2021.06.028
摘要

Background and aims Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This study established a machine learning (ML)-based, individualized decision system to identify and grade malnutrition using large-scale data from cancer patients. Methods This was an observational, nationwide, multicenter cohort study that included 14134 cancer patients from five institutions in four different geographic regions of China. Multi-stage K-means clustering was performed to isolate and grade malnutrition based on 17 core nutritional features. The effectiveness of the identified clusters for reflecting clinical characteristics, nutritional status and patient outcomes was comprehensively evaluated. The study population was randomly split for model derivation and validation. Multiple ML algorithms were developed, validated and compared to screen for optimal models to implement the cluster prediction. Results A well-nourished cluster (n = 8193, 58.0%) and a malnourished cluster with three phenotype-specific severity levels (mild = 2195, 15.5%; moderate = 2491, 17.6%; severe = 1255, 8.9%) were identified. The clusters showed moderate agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria. The severity of malnutrition was negatively associated with the nutritional status, physical status, quality of life, and short-term outcomes, and was monotonically correlated with reduced overall survival. A multinomial logistic regression was found to be the optimal ML algorithm, and models built based on this algorithm showed almost perfect performance to predict the clusters in the validation data. Conclusions This study developed a fusion decision system that can be used to facilitate the identification and severity grading of malnutrition in patients with cancer. Moreover, the study workflow is flexible, and might provide a generalizable solution for the artificial intelligence-based assessment of malnutrition in a wider variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
多晶1完成签到,获得积分10
2秒前
3秒前
xingxingxing发布了新的文献求助10
3秒前
4秒前
7秒前
SciGPT应助q792309106采纳,获得10
7秒前
8秒前
上官若男应助卖萌的秋田采纳,获得10
8秒前
袁超发布了新的文献求助30
9秒前
张雯思发布了新的文献求助10
9秒前
JJ发布了新的文献求助10
9秒前
旧梦完成签到 ,获得积分10
10秒前
tramp应助xiamu采纳,获得20
11秒前
xingxingxing完成签到,获得积分10
12秒前
甜甜的悲发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
张钦奎发布了新的文献求助10
13秒前
13秒前
zhjg发布了新的文献求助10
14秒前
阿超完成签到,获得积分10
14秒前
FashionBoy应助凪凪采纳,获得10
16秒前
16秒前
wanci应助jinzhen采纳,获得10
17秒前
13发布了新的文献求助10
17秒前
小蘑菇应助甜甜的悲采纳,获得10
19秒前
GL发布了新的文献求助10
20秒前
袁超完成签到,获得积分10
20秒前
20秒前
忧郁盼夏发布了新的文献求助10
21秒前
21秒前
q792309106完成签到,获得积分10
22秒前
乖猫要努力应助郭小宝采纳,获得20
22秒前
q792309106发布了新的文献求助10
26秒前
26秒前
凪凪发布了新的文献求助10
26秒前
26秒前
情怀应助忧郁盼夏采纳,获得10
27秒前
wx完成签到,获得积分10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173