A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data

营养不良 医学 观察研究 浪费的 聚类分析 人口 多项式logistic回归 逻辑回归 机器学习 星团(航天器) 人工智能 数据挖掘 内科学 环境卫生 计算机科学 程序设计语言
作者
Liangyu Yin,Chunhua Song,Jiuwei Cui,Xin Lin,Na Li,Jing Wang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Wei Li,Mei Yang,Jiami Yu,Xiaojie Wang,Xing Liu,Shoumei Yang,Zheng Zuo,Kaitao Yuan,Miao Yu,Minghua Cong,Zengning Li,Pingping Jia,Suyi Li,Zengqing Guo,Hanping Shi,Hongxia Xu
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:40 (8): 4958-4970 被引量:33
标识
DOI:10.1016/j.clnu.2021.06.028
摘要

Background and aims Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This study established a machine learning (ML)-based, individualized decision system to identify and grade malnutrition using large-scale data from cancer patients. Methods This was an observational, nationwide, multicenter cohort study that included 14134 cancer patients from five institutions in four different geographic regions of China. Multi-stage K-means clustering was performed to isolate and grade malnutrition based on 17 core nutritional features. The effectiveness of the identified clusters for reflecting clinical characteristics, nutritional status and patient outcomes was comprehensively evaluated. The study population was randomly split for model derivation and validation. Multiple ML algorithms were developed, validated and compared to screen for optimal models to implement the cluster prediction. Results A well-nourished cluster (n = 8193, 58.0%) and a malnourished cluster with three phenotype-specific severity levels (mild = 2195, 15.5%; moderate = 2491, 17.6%; severe = 1255, 8.9%) were identified. The clusters showed moderate agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria. The severity of malnutrition was negatively associated with the nutritional status, physical status, quality of life, and short-term outcomes, and was monotonically correlated with reduced overall survival. A multinomial logistic regression was found to be the optimal ML algorithm, and models built based on this algorithm showed almost perfect performance to predict the clusters in the validation data. Conclusions This study developed a fusion decision system that can be used to facilitate the identification and severity grading of malnutrition in patients with cancer. Moreover, the study workflow is flexible, and might provide a generalizable solution for the artificial intelligence-based assessment of malnutrition in a wider variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lion完成签到,获得积分10
2秒前
2秒前
6秒前
快乐寄风发布了新的文献求助10
7秒前
9秒前
13秒前
风趣尔琴完成签到,获得积分10
14秒前
自由的机器猫完成签到,获得积分10
19秒前
Singularity发布了新的文献求助10
20秒前
小王发布了新的文献求助10
20秒前
后山种仙草完成签到,获得积分10
21秒前
zzr元亨利贞完成签到,获得积分10
27秒前
小王完成签到,获得积分10
28秒前
寒崽完成签到 ,获得积分10
30秒前
31秒前
33秒前
spark317发布了新的文献求助10
35秒前
36秒前
37秒前
zhangzhenwen1204完成签到 ,获得积分10
41秒前
阿妍碎碎念完成签到,获得积分10
43秒前
小竹笋完成签到 ,获得积分10
43秒前
43秒前
43秒前
Orange应助舟舟采纳,获得10
43秒前
耿耿发布了新的文献求助10
47秒前
烟酒不离生完成签到 ,获得积分10
51秒前
pursuing完成签到,获得积分10
53秒前
54秒前
jiang发布了新的社区帖子
55秒前
灵巧的翠风完成签到 ,获得积分10
57秒前
58秒前
58秒前
田様应助学学采纳,获得30
58秒前
1分钟前
wonhui发布了新的文献求助10
1分钟前
赤墨完成签到,获得积分10
1分钟前
李健应助zzq采纳,获得10
1分钟前
无限飞烟完成签到,获得积分10
1分钟前
nonkul发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079