A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data

营养不良 医学 观察研究 浪费的 聚类分析 人口 多项式logistic回归 逻辑回归 机器学习 星团(航天器) 人工智能 数据挖掘 内科学 环境卫生 计算机科学 程序设计语言
作者
Liangyu Yin,Chunhua Song,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Wei Li,Mei Yang,Jiami Yu,Xiaojie Wang,Xing Liu,Shoumei Yang,Zheng Zuo
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:40 (8): 4958-4970 被引量:39
标识
DOI:10.1016/j.clnu.2021.06.028
摘要

Background and aims Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This study established a machine learning (ML)-based, individualized decision system to identify and grade malnutrition using large-scale data from cancer patients. Methods This was an observational, nationwide, multicenter cohort study that included 14134 cancer patients from five institutions in four different geographic regions of China. Multi-stage K-means clustering was performed to isolate and grade malnutrition based on 17 core nutritional features. The effectiveness of the identified clusters for reflecting clinical characteristics, nutritional status and patient outcomes was comprehensively evaluated. The study population was randomly split for model derivation and validation. Multiple ML algorithms were developed, validated and compared to screen for optimal models to implement the cluster prediction. Results A well-nourished cluster (n = 8193, 58.0%) and a malnourished cluster with three phenotype-specific severity levels (mild = 2195, 15.5%; moderate = 2491, 17.6%; severe = 1255, 8.9%) were identified. The clusters showed moderate agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria. The severity of malnutrition was negatively associated with the nutritional status, physical status, quality of life, and short-term outcomes, and was monotonically correlated with reduced overall survival. A multinomial logistic regression was found to be the optimal ML algorithm, and models built based on this algorithm showed almost perfect performance to predict the clusters in the validation data. Conclusions This study developed a fusion decision system that can be used to facilitate the identification and severity grading of malnutrition in patients with cancer. Moreover, the study workflow is flexible, and might provide a generalizable solution for the artificial intelligence-based assessment of malnutrition in a wider variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助玺玺采纳,获得10
刚刚
YDM发布了新的文献求助10
1秒前
Sony程鸭发布了新的文献求助10
1秒前
Dai WJ发布了新的文献求助10
1秒前
科研通AI6应助zzuwxj采纳,获得10
1秒前
科研通AI5应助刘一凡采纳,获得10
1秒前
研友_VZG7GZ应助雪花采纳,获得10
2秒前
HMethod完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
淡然惜萱完成签到,获得积分10
2秒前
2秒前
yznfly应助高大楼房采纳,获得30
2秒前
林一发布了新的文献求助10
2秒前
Doudou发布了新的文献求助10
3秒前
ACE发布了新的文献求助10
3秒前
3秒前
北冥完成签到 ,获得积分10
4秒前
4秒前
5秒前
朽木发布了新的文献求助10
5秒前
大宝宝完成签到,获得积分10
6秒前
游泳的龙发布了新的文献求助10
6秒前
李海平发布了新的文献求助10
6秒前
大力的莺发布了新的文献求助10
7秒前
suijinicheng完成签到,获得积分10
7秒前
7秒前
爆米花应助star采纳,获得10
7秒前
XXXXL发布了新的文献求助10
7秒前
李健的粉丝团团长应助ACE采纳,获得10
8秒前
几分之几发布了新的文献求助10
9秒前
星辰大海应助miemie采纳,获得10
9秒前
ding应助Jie_huang采纳,获得10
9秒前
9秒前
无语的外套完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Rose完成签到,获得积分10
10秒前
勤奋紊完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541