A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data

营养不良 医学 观察研究 浪费的 聚类分析 人口 多项式logistic回归 逻辑回归 机器学习 星团(航天器) 人工智能 数据挖掘 内科学 环境卫生 计算机科学 程序设计语言
作者
Liangyu Yin,Chunhua Song,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Wei Li,Mei Yang,Jiami Yu,Xiaojie Wang,Xing Liu,Shoumei Yang,Zheng Zuo
出处
期刊:Clinical Nutrition [Elsevier BV]
卷期号:40 (8): 4958-4970 被引量:39
标识
DOI:10.1016/j.clnu.2021.06.028
摘要

Background and aims Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This study established a machine learning (ML)-based, individualized decision system to identify and grade malnutrition using large-scale data from cancer patients. Methods This was an observational, nationwide, multicenter cohort study that included 14134 cancer patients from five institutions in four different geographic regions of China. Multi-stage K-means clustering was performed to isolate and grade malnutrition based on 17 core nutritional features. The effectiveness of the identified clusters for reflecting clinical characteristics, nutritional status and patient outcomes was comprehensively evaluated. The study population was randomly split for model derivation and validation. Multiple ML algorithms were developed, validated and compared to screen for optimal models to implement the cluster prediction. Results A well-nourished cluster (n = 8193, 58.0%) and a malnourished cluster with three phenotype-specific severity levels (mild = 2195, 15.5%; moderate = 2491, 17.6%; severe = 1255, 8.9%) were identified. The clusters showed moderate agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria. The severity of malnutrition was negatively associated with the nutritional status, physical status, quality of life, and short-term outcomes, and was monotonically correlated with reduced overall survival. A multinomial logistic regression was found to be the optimal ML algorithm, and models built based on this algorithm showed almost perfect performance to predict the clusters in the validation data. Conclusions This study developed a fusion decision system that can be used to facilitate the identification and severity grading of malnutrition in patients with cancer. Moreover, the study workflow is flexible, and might provide a generalizable solution for the artificial intelligence-based assessment of malnutrition in a wider variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
查查make完成签到,获得积分10
刚刚
Jasper应助大橙子采纳,获得10
1秒前
GUO发布了新的文献求助30
2秒前
三石完成签到 ,获得积分10
2秒前
跳跃的白云完成签到 ,获得积分10
3秒前
酷酷亦寒完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
Blaseaka完成签到 ,获得积分10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
沉静的浩然完成签到,获得积分10
10秒前
开朗的绮山完成签到,获得积分10
10秒前
10秒前
老迟到的土豆完成签到 ,获得积分10
13秒前
单薄的日记本完成签到,获得积分10
13秒前
大橙子发布了新的文献求助10
14秒前
舒适的天奇完成签到 ,获得积分10
15秒前
16秒前
18秒前
都是小儿卡通书完成签到,获得积分10
19秒前
20秒前
陶醉的又夏完成签到 ,获得积分10
20秒前
lily完成签到 ,获得积分10
23秒前
24秒前
子苓完成签到 ,获得积分10
26秒前
Jun完成签到 ,获得积分10
26秒前
phil完成签到,获得积分10
27秒前
祁乐安发布了新的文献求助20
27秒前
如初完成签到,获得积分10
28秒前
zzuwxj完成签到,获得积分10
31秒前
糊涂的语兰完成签到,获得积分10
35秒前
多余完成签到,获得积分10
36秒前
喝酸奶不舔盖完成签到 ,获得积分10
36秒前
朴实初夏完成签到 ,获得积分10
37秒前
37秒前
华仔应助查查make采纳,获得10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022