A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data

营养不良 医学 观察研究 浪费的 聚类分析 人口 多项式logistic回归 逻辑回归 机器学习 星团(航天器) 人工智能 数据挖掘 内科学 环境卫生 计算机科学 程序设计语言
作者
Liangyu Yin,Chunhua Song,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Wei Li,Mei Yang,Jiami Yu,Xiaojie Wang,Xing Liu,Shoumei Yang,Zheng Zuo
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:40 (8): 4958-4970 被引量:47
标识
DOI:10.1016/j.clnu.2021.06.028
摘要

Background and aims Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This study established a machine learning (ML)-based, individualized decision system to identify and grade malnutrition using large-scale data from cancer patients. Methods This was an observational, nationwide, multicenter cohort study that included 14134 cancer patients from five institutions in four different geographic regions of China. Multi-stage K-means clustering was performed to isolate and grade malnutrition based on 17 core nutritional features. The effectiveness of the identified clusters for reflecting clinical characteristics, nutritional status and patient outcomes was comprehensively evaluated. The study population was randomly split for model derivation and validation. Multiple ML algorithms were developed, validated and compared to screen for optimal models to implement the cluster prediction. Results A well-nourished cluster (n = 8193, 58.0%) and a malnourished cluster with three phenotype-specific severity levels (mild = 2195, 15.5%; moderate = 2491, 17.6%; severe = 1255, 8.9%) were identified. The clusters showed moderate agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria. The severity of malnutrition was negatively associated with the nutritional status, physical status, quality of life, and short-term outcomes, and was monotonically correlated with reduced overall survival. A multinomial logistic regression was found to be the optimal ML algorithm, and models built based on this algorithm showed almost perfect performance to predict the clusters in the validation data. Conclusions This study developed a fusion decision system that can be used to facilitate the identification and severity grading of malnutrition in patients with cancer. Moreover, the study workflow is flexible, and might provide a generalizable solution for the artificial intelligence-based assessment of malnutrition in a wider variety of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
烟花应助Sunny采纳,获得10
1秒前
领导范儿应助楚天正阔采纳,获得10
1秒前
2秒前
小卡拉米完成签到,获得积分20
2秒前
随机子发布了新的文献求助200
2秒前
2秒前
3秒前
Renn发布了新的文献求助10
3秒前
Hello应助kiki采纳,获得10
3秒前
3秒前
QQ完成签到,获得积分10
3秒前
3秒前
小二郎应助ZSC采纳,获得10
4秒前
5秒前
靓丽不评发布了新的文献求助10
5秒前
共享精神应助仄言采纳,获得10
5秒前
ww完成签到 ,获得积分10
6秒前
qweerrtt完成签到,获得积分10
6秒前
6秒前
LZNUDT发布了新的文献求助10
6秒前
迷人雪碧发布了新的文献求助10
6秒前
lee发布了新的文献求助10
7秒前
点滴电镀完成签到,获得积分10
7秒前
826871896完成签到,获得积分20
8秒前
lu2025发布了新的文献求助10
8秒前
cs完成签到,获得积分10
8秒前
英姑应助WeOne采纳,获得10
9秒前
罗先生完成签到,获得积分20
9秒前
李健应助LZNUDT采纳,获得10
9秒前
放飞的羊驼完成签到,获得积分10
10秒前
11秒前
君无邪完成签到,获得积分10
11秒前
上官若男应助现代的谷南采纳,获得10
11秒前
12秒前
12秒前
小鹿呀完成签到,获得积分10
12秒前
syc发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652390
求助须知:如何正确求助?哪些是违规求助? 4787308
关于积分的说明 15059776
捐赠科研通 4810983
什么是DOI,文献DOI怎么找? 2573527
邀请新用户注册赠送积分活动 1529357
关于科研通互助平台的介绍 1488250