The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

听诊 心音图 心音 心脏杂音 计算机科学 听诊器 语音识别 心脏听诊 人工智能 模式识别(心理学) 医学 心电图 放射科 心脏病学
作者
Jorge Oliveira,Francesco Renna,Pedro Costa,Diogo Marcelo Nogueira,Carolina Oliveira,Carlos Ferreira,Alí­pio Jorge,Sandra da Silva Mattos,Thamine de Paula Hatem,Thiago Ribeiro Tavares,Andoni Elola,Ali Bahrami Rad,Reza Sameni,Gari D. Clifford,Miguel Coimbra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2524-2535 被引量:39
标识
DOI:10.1109/jbhi.2021.3137048
摘要

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正己化人应助白华苍松采纳,获得20
1秒前
藿藿完成签到,获得积分10
2秒前
bing完成签到,获得积分10
2秒前
lindalin完成签到,获得积分10
2秒前
资浩阑发布了新的文献求助10
3秒前
小十一完成签到 ,获得积分10
4秒前
张宁波完成签到,获得积分0
5秒前
Orange应助bmhs2017采纳,获得10
5秒前
情怀应助活泼红牛采纳,获得10
5秒前
康米完成签到,获得积分10
5秒前
pan完成签到,获得积分10
5秒前
白玫瑰完成签到,获得积分10
5秒前
沙心应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
一叶知秋应助科研通管家采纳,获得20
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
英姑应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
8秒前
蜘猪侠zx应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
睡不醒的xx完成签到 ,获得积分10
9秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963