亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

听诊 心音图 心音 心脏杂音 计算机科学 听诊器 语音识别 心脏听诊 人工智能 模式识别(心理学) 医学 心电图 放射科 心脏病学
作者
Jorge Oliveira,Francesco Renna,Pedro Costa,Diogo Marcelo Nogueira,Carolina Oliveira,Carlos Ferreira,Alí­pio Jorge,Sandra da Silva Mattos,Thamine de Paula Hatem,Thiago Ribeiro Tavares,Andoni Elola,Ali Bahrami Rad,Reza Sameni,Gari D. Clifford,Miguel Coimbra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2524-2535 被引量:39
标识
DOI:10.1109/jbhi.2021.3137048
摘要

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
6秒前
xjzx_xxh发布了新的文献求助10
7秒前
shinn发布了新的文献求助10
8秒前
小年小少发布了新的文献求助10
10秒前
12秒前
14秒前
无为完成签到,获得积分10
16秒前
xjzx_xxh完成签到,获得积分10
20秒前
Jasper应助标致的元柏采纳,获得10
20秒前
wanwan524完成签到 ,获得积分10
22秒前
无语的巨人完成签到 ,获得积分10
26秒前
27秒前
toutou应助Omni采纳,获得10
27秒前
烟花应助shinn采纳,获得10
30秒前
34秒前
34秒前
36秒前
量子星尘发布了新的文献求助10
39秒前
小年小少发布了新的文献求助10
40秒前
zjq发布了新的文献求助10
42秒前
43秒前
深情安青应助小年小少采纳,获得10
45秒前
领导范儿应助老婶子采纳,获得10
47秒前
标致的元柏完成签到,获得积分10
48秒前
shinn发布了新的文献求助10
49秒前
51秒前
上官若男应助shinn采纳,获得10
56秒前
57秒前
干净思远完成签到,获得积分10
58秒前
Dylan完成签到 ,获得积分10
59秒前
Caleb完成签到,获得积分10
1分钟前
1分钟前
华仔应助爱做实验的泡利采纳,获得10
1分钟前
shinn发布了新的文献求助10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
YCG完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772446
求助须知:如何正确求助?哪些是违规求助? 5598683
关于积分的说明 15429642
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639381
邀请新用户注册赠送积分活动 1587308
关于科研通互助平台的介绍 1542165