The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

听诊 心音图 心音 心脏杂音 计算机科学 听诊器 语音识别 心脏听诊 人工智能 模式识别(心理学) 医学 心电图 放射科 心脏病学
作者
Jorge Oliveira,Francesco Renna,Pedro Costa,Diogo Marcelo Nogueira,Carolina Oliveira,Carlos Ferreira,Alí­pio Jorge,Sandra da Silva Mattos,Thamine de Paula Hatem,Thiago Ribeiro Tavares,Andoni Elola,Ali Bahrami Rad,Reza Sameni,Gari D. Clifford,Miguel Coimbra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2524-2535 被引量:39
标识
DOI:10.1109/jbhi.2021.3137048
摘要

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
丘比特应助wsgdhz采纳,获得10
2秒前
Hoyshin应助Sui采纳,获得20
3秒前
kangnakangna发布了新的文献求助20
3秒前
共享精神应助芋泥桃桃采纳,获得10
3秒前
支盼夏完成签到,获得积分10
3秒前
科目三应助jstagey采纳,获得10
4秒前
科研通AI5应助徐昊雯采纳,获得10
4秒前
wz发布了新的文献求助10
4秒前
dxp完成签到,获得积分10
4秒前
ln发布了新的文献求助10
5秒前
李健应助合适板栗采纳,获得10
5秒前
5秒前
平淡的雁开应助JUAN采纳,获得10
6秒前
6秒前
6秒前
Hello应助魏不不采纳,获得10
7秒前
後知後孓完成签到,获得积分10
8秒前
9秒前
9秒前
周维发布了新的文献求助10
9秒前
10秒前
想毕业完成签到,获得积分10
10秒前
後知後孓发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
狂野谷冬完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
ZexiWu发布了新的文献求助20
13秒前
玖念发布了新的文献求助10
14秒前
想毕业发布了新的文献求助40
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
kingwill应助科研通管家采纳,获得20
14秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709