The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

听诊 心音图 心音 心脏杂音 计算机科学 听诊器 语音识别 心脏听诊 人工智能 模式识别(心理学) 医学 心电图 放射科 心脏病学
作者
Jorge Oliveira,Francesco Renna,Pedro Costa,Diogo Marcelo Nogueira,Carolina Oliveira,Carlos Ferreira,Alí­pio Jorge,Sandra da Silva Mattos,Thamine de Paula Hatem,Thiago Ribeiro Tavares,Andoni Elola,Ali Bahrami Rad,Reza Sameni,Gari D. Clifford,Miguel Coimbra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2524-2535 被引量:39
标识
DOI:10.1109/jbhi.2021.3137048
摘要

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真的孤云完成签到 ,获得积分10
1秒前
围城完成签到,获得积分10
1秒前
1秒前
Eurus完成签到,获得积分10
2秒前
vfriy完成签到 ,获得积分10
2秒前
重要的如天完成签到,获得积分10
3秒前
123321完成签到,获得积分10
4秒前
小灵通完成签到,获得积分10
4秒前
lvsehx发布了新的文献求助10
4秒前
淡淡的橘子完成签到,获得积分10
6秒前
彭于晏应助超chao采纳,获得10
6秒前
7秒前
swy发布了新的文献求助10
7秒前
早点写完论文完成签到,获得积分10
8秒前
山海之间完成签到,获得积分10
8秒前
迅速思萱完成签到,获得积分10
9秒前
10秒前
难过的花生完成签到,获得积分10
10秒前
ding应助hzauhzau采纳,获得10
12秒前
yjj完成签到,获得积分10
12秒前
hyx完成签到,获得积分10
14秒前
14秒前
15秒前
不配.应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得30
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
19应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
宇文远锋应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207057
求助须知:如何正确求助?哪些是违规求助? 2856477
关于积分的说明 8104841
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354913
科研通“疑难数据库(出版商)”最低求助积分说明 642098
邀请新用户注册赠送积分活动 613343