The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

听诊 心音图 心音 心脏杂音 计算机科学 听诊器 语音识别 心脏听诊 人工智能 模式识别(心理学) 医学 心电图 放射科 心脏病学
作者
Jorge Oliveira,Francesco Renna,Pedro Costa,Diogo Marcelo Nogueira,Carolina Oliveira,Carlos Ferreira,Alí­pio Jorge,Sandra da Silva Mattos,Thamine de Paula Hatem,Thiago Ribeiro Tavares,Andoni Elola,Ali Bahrami Rad,Reza Sameni,Gari D. Clifford,Miguel Coimbra
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2524-2535 被引量:39
标识
DOI:10.1109/jbhi.2021.3137048
摘要

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助稳重的紫易采纳,获得10
刚刚
尽快毕业完成签到 ,获得积分10
刚刚
充电宝应助饼藏采纳,获得10
1秒前
xyhua925完成签到,获得积分10
1秒前
2秒前
Jason发布了新的文献求助10
2秒前
222发布了新的文献求助10
3秒前
快乐的打羽毛球完成签到 ,获得积分10
4秒前
乐乐应助朴素的天蓝采纳,获得10
4秒前
叮叮叮铛完成签到,获得积分10
4秒前
苏silence发布了新的文献求助10
4秒前
5秒前
5秒前
Rondab应助桃李春风一杯酒采纳,获得10
6秒前
6秒前
暖阳完成签到 ,获得积分10
8秒前
颜代曼完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
HSY驳回了桐桐应助
10秒前
xuexi发布了新的文献求助10
11秒前
666应助渊思采纳,获得10
11秒前
11秒前
斑马兽完成签到,获得积分10
11秒前
甜甜的满天完成签到,获得积分10
12秒前
颜代曼发布了新的文献求助30
12秒前
12秒前
13秒前
air233完成签到,获得积分10
14秒前
xpqiu发布了新的文献求助30
14秒前
一只小怪物完成签到,获得积分10
14秒前
15秒前
多肉发布了新的文献求助30
15秒前
黄文怡完成签到,获得积分20
16秒前
Jason完成签到,获得积分20
16秒前
深情斓发布了新的文献求助30
16秒前
ttsong2完成签到,获得积分10
16秒前
悦耳的黑米完成签到,获得积分10
17秒前
麻师长发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528