亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multimodal Framework for Improvingin SilicoDrug Repositioning With the Prior Knowledge From Knowledge Graphs

知识图 计算机科学 领域知识 嵌入 药物重新定位 图形 药品 图嵌入 人工智能 机器学习 理论计算机科学 医学 精神科
作者
Zhankun Xiong,Feng Huang,Ziyan Wang,Shichao Liu,Wen Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2623-2631 被引量:11
标识
DOI:10.1109/tcbb.2021.3103595
摘要

Drug repositioning/repurposing is a very important approach towards identifying novel treatments for diseases in drug discovery. Recently, large-scale biological datasets are increasingly available for pharmaceutical research and promote the development of drug repositioning, but efficiently utilizing these datasets remains challenging. In this paper, we develop a novel multimodal framework, termed GraphPK (Graph-based Prior Knowledge) for improving in silico drug repositioning via using the prior knowledge from a drug knowledge graph. First, we construct a knowledge graph by integrating relevant bio-entities (drugs, diseases, etc.) and associations/interactions among them, and apply the knowledge graph embedding technique to extract prior knowledge of drugs and diseases. Moreover, we make use of the known drug-disease association, and obtain known association-based features from an association bipartite graph through graph embedding, and also take into account biological domain features, i.e., drug chemical structures and disease semantic similarity. Finally, we design a multimodal neural network to combine three types of features from the knowledge graph, the known associations and the biological domain, and build the prediction model for predicting drug-disease associations. Massive experiments show that our method outperforms other state-of-the-art methods in terms of most metrics, and the ablation analysis regarding the three types of features reveals that prior knowledge from knowledge graphs can not only lift the predictive power of in silico drug repositioning, but also enhance the model's robustness to different scenarios. The results of case studies offer support that GraphPK has the potential for actual use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12发布了新的文献求助10
4秒前
42秒前
优美的冰巧完成签到,获得积分10
44秒前
48秒前
49秒前
56秒前
严冰蝶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
开放乐巧发布了新的文献求助10
1分钟前
XKINGLEE完成签到 ,获得积分10
1分钟前
1分钟前
webmaster完成签到,获得积分10
1分钟前
1分钟前
Huang完成签到,获得积分10
1分钟前
我是老大应助开放乐巧采纳,获得10
1分钟前
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
YangSihan发布了新的文献求助10
2分钟前
坦率耳机应助YangSihan采纳,获得20
2分钟前
十七完成签到,获得积分10
2分钟前
搜集达人应助wjadejing采纳,获得10
2分钟前
YangSihan完成签到,获得积分10
2分钟前
2分钟前
wjadejing发布了新的文献求助10
2分钟前
wjadejing完成签到,获得积分20
2分钟前
2分钟前
2分钟前
gy完成签到,获得积分10
2分钟前
852应助田柾国采纳,获得10
3分钟前
二十又澪完成签到,获得积分10
3分钟前
酷波er应助老白非采纳,获得10
3分钟前
科研通AI2S应助oleskarabach采纳,获得10
3分钟前
二十又澪发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899645
捐赠科研通 2472759
什么是DOI,文献DOI怎么找? 1316517
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142