Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding

点云 树(集合论) 点式的 计算机科学 分割 人工智能 模式识别(心理学) 区间树 聚类分析 树形结构 K元树 数学 算法 二叉树 数学分析
作者
Haifeng Luo,Kourosh Khoshelham,Chongcheng Chen,Hanxian He
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 326-339 被引量:43
标识
DOI:10.1016/j.isprsjprs.2021.03.002
摘要

Individual tree extraction from urban mobile laser scanning (MLS) point clouds is important for many urban applications. Recently, deep learning-based semantic segmentation of urban MLS point clouds has achieved significant progress, which makes it possible to segment tree point clouds. However, tree segments often are spatially overlapping with varying shapes and incompleteness caused by occlusion, which makes individual tree extraction a challenging task. In this paper, we propose a novel top-down approach to extract individual trees from urban MLS point clouds. Firstly, a semantic segmentation deep network is applied to segment tree points from raw urban MLS point clouds, and then the segmented tree points are further grouped into a set of tree clusters using Euclidean distance clustering. Next, a pointwise direction embedding deep network (PDE-net) is proposed to predict the direction vectors pointing to tree centers for each tree cluster to enhance the boundaries of instance-level trees. After that, a direction aggregation-based strategy is developed to detect the tree centers for each tree cluster, and the clusters are classified into single-tree clusters and multi-tree clusters based on the number of detected tree centers. Finally, the single-tree clusters are directly extracted as individual trees, while the multi-tree clusters are further separated into instance-level trees based on our proposed accessible region growing algorithm combining the embedded pointwise directions and detected tree centers. Four MLS point clouds collected from different urban scenes were used to evaluate the performance of the proposed method. The precision, recall, and F-score of 0.96, 0.94, and 0.95, respectively, on these four datasets demonstrate the effectiveness of our approach. An implementation of the proposed method is available at: https://github.com/HiphonL/IndividualTreeExtraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JACK发布了新的文献求助10
2秒前
slp完成签到 ,获得积分10
3秒前
starofjlu应助雨诺采纳,获得20
4秒前
宋宋发布了新的文献求助30
4秒前
4秒前
Arthur发布了新的文献求助10
6秒前
xrkxrk完成签到 ,获得积分10
7秒前
梵星应助活力寻菱采纳,获得10
7秒前
8秒前
zxz发布了新的文献求助50
8秒前
JACK完成签到,获得积分10
10秒前
12秒前
我想静静完成签到 ,获得积分10
12秒前
wang1457完成签到,获得积分10
14秒前
16秒前
小马甲应助道道sy采纳,获得10
19秒前
19秒前
充电宝应助JackeyHu采纳,获得10
20秒前
20秒前
情怀应助Mik采纳,获得10
21秒前
RRROP发布了新的文献求助10
22秒前
魔幻友菱完成签到 ,获得积分10
24秒前
26秒前
26秒前
活力寻菱完成签到 ,获得积分10
27秒前
凌晨洋发布了新的文献求助10
29秒前
Reader01完成签到 ,获得积分10
30秒前
虚幻故事发布了新的文献求助10
31秒前
潇洒的诗桃应助RRROP采纳,获得10
32秒前
34秒前
lin发布了新的文献求助10
36秒前
诸苑博给诸苑博的求助进行了留言
37秒前
LQ发布了新的文献求助10
37秒前
40秒前
42秒前
RRROP完成签到,获得积分20
44秒前
科目三应助六点一横采纳,获得10
44秒前
曾医生完成签到,获得积分10
44秒前
boogie发布了新的文献求助10
45秒前
道道sy发布了新的文献求助10
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151970
求助须知:如何正确求助?哪些是违规求助? 2803266
关于积分的说明 7852878
捐赠科研通 2460679
什么是DOI,文献DOI怎么找? 1309983
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760