Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding

点云 树(集合论) 点式的 计算机科学 分割 人工智能 模式识别(心理学) 区间树 聚类分析 树形结构 K元树 数学 算法 二叉树 数学分析
作者
Haifeng Luo,Kourosh Khoshelham,Chongcheng Chen,Hanxian He
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 326-339 被引量:52
标识
DOI:10.1016/j.isprsjprs.2021.03.002
摘要

Individual tree extraction from urban mobile laser scanning (MLS) point clouds is important for many urban applications. Recently, deep learning-based semantic segmentation of urban MLS point clouds has achieved significant progress, which makes it possible to segment tree point clouds. However, tree segments often are spatially overlapping with varying shapes and incompleteness caused by occlusion, which makes individual tree extraction a challenging task. In this paper, we propose a novel top-down approach to extract individual trees from urban MLS point clouds. Firstly, a semantic segmentation deep network is applied to segment tree points from raw urban MLS point clouds, and then the segmented tree points are further grouped into a set of tree clusters using Euclidean distance clustering. Next, a pointwise direction embedding deep network (PDE-net) is proposed to predict the direction vectors pointing to tree centers for each tree cluster to enhance the boundaries of instance-level trees. After that, a direction aggregation-based strategy is developed to detect the tree centers for each tree cluster, and the clusters are classified into single-tree clusters and multi-tree clusters based on the number of detected tree centers. Finally, the single-tree clusters are directly extracted as individual trees, while the multi-tree clusters are further separated into instance-level trees based on our proposed accessible region growing algorithm combining the embedded pointwise directions and detected tree centers. Four MLS point clouds collected from different urban scenes were used to evaluate the performance of the proposed method. The precision, recall, and F-score of 0.96, 0.94, and 0.95, respectively, on these four datasets demonstrate the effectiveness of our approach. An implementation of the proposed method is available at: https://github.com/HiphonL/IndividualTreeExtraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小娟子发布了新的文献求助10
4秒前
wqxm完成签到,获得积分10
6秒前
万能图书馆应助蝶衣采纳,获得30
6秒前
月光入梦发布了新的文献求助10
8秒前
呼呼哈哈完成签到,获得积分10
8秒前
leo_zjm发布了新的文献求助10
9秒前
慕吹完成签到,获得积分10
9秒前
大水发布了新的文献求助10
9秒前
ddd应助Rqbnicsp采纳,获得30
11秒前
11秒前
14秒前
15秒前
大意的绿蓉完成签到,获得积分10
15秒前
隐形曼青应助gym采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
johnz001完成签到,获得积分10
17秒前
leo_zjm完成签到,获得积分10
20秒前
21秒前
Jennie发布了新的文献求助10
21秒前
22秒前
Rqbnicsp完成签到,获得积分10
22秒前
lanheqingniao发布了新的文献求助10
23秒前
x夏天完成签到 ,获得积分10
23秒前
Ys发布了新的文献求助10
24秒前
24秒前
25秒前
小确幸完成签到,获得积分10
25秒前
852应助依依采纳,获得10
25秒前
半眠日记完成签到,获得积分20
27秒前
29秒前
完美世界应助斯文尔阳采纳,获得10
29秒前
猪猪hero应助积极松鼠采纳,获得10
29秒前
黑压压的帝企鹅完成签到,获得积分10
30秒前
31秒前
标致的耷发布了新的文献求助10
31秒前
zhaosh完成签到,获得积分10
32秒前
Lucas应助萧水白采纳,获得100
33秒前
hang发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172