光电阴极
材料科学
法拉第效率
催化作用
氮化物
可逆氢电极
电催化剂
纳米技术
化学工程
氨生产
分解水
电化学
光催化
氮化碳
电极
化学
工作电极
图层(电子)
有机化学
物理化学
电子
工程类
物理
量子力学
作者
Karthik Peramaiah,R. Vinoth,Hui‐Chun Fu,Merfat M. Alsabban,Rafia Ahmad,Luigi Cavallo,Vincent Tung,Kuo‐Wei Huang,Jr‐Hau He
标识
DOI:10.1002/adma.202100812
摘要
Abstract The photoelectrochemical (PEC) approach is attractive as a promising route for the nitrogen reduction reaction (NRR) toward ammonia (NH 3 ) synthesis. However, the challenges in synergistic management of optical, electrical, and catalytic properties have limited the efficiency of PEC NRR devices. Herein, to enhance light‐harvesting, carrier separation/transport, and the catalytic reactions, a concept of decoupling light‐harvesting and electrocatalysis by employing a cascade n + np + ‐Si photocathode is implemented. Such a decoupling design not only abolishes the parasitic light blocking but also concurrently improves the optical and electrical properties of the n + np + ‐Si photocathode without compromising the efficiency. Experimental and density functional theory studies reveal that the porous architecture and N‐vacancies promote N 2 adsorption of the Au/porous carbon nitride (PCN) catalyst. Impressively, an n + np + ‐Si photocathode integrating the Au/PCN catalyst exhibits an outstanding PEC NRR performance with maximum Faradaic efficiency (FE) of 61.8% and NH 3 production yield of 13.8 µg h –1 cm –2 at −0.10 V versus reversible hydrogen electrode (RHE), which is the highest FE at low applied potential ever reported for the PEC NRR.
科研通智能强力驱动
Strongly Powered by AbleSci AI