Thyroid classification and segmentation in ultrasound images using machine learning algorithms

人工智能 支持向量机 计算机科学 分割 直方图 基本事实 模式识别(心理学) 图像分割 特征提取 分类器(UML) 特征(语言学) 超声波 机器学习 计算机视觉 放射科 图像(数学) 医学 哲学 语言学
作者
D. Selvathi,V.S. Sharnitha
标识
DOI:10.1109/icsccn.2011.6024666
摘要

The clinical reports usually offer morphometric data in terms of change relative to a prior study. Therefore, to provide the information about an object clinically in terms of its size and shape, image segmentation and classification are important tools in medical image processing. Ultrasound is a versatile imaging technique that can reveal the internal structure of organs, often with astounding clarity. Ultrasound is unique in its ability to image patient anatomy and physiology in real time, providing an important, rapid and non-invasive means of evaluation. Ultrasound continues to make significant contributions to patient care by reassuring patients and enhancing their quality of life by helping physicians understand their anatomy in ways not possible with other techniques. US imaging is thus one of the most commonly used auxiliary tools in clinical diagnosis. In this paper, an automatic system is developed that classifies the thyroid images and segments the thyroid gland using machine learning algorithms. The classifiers such as SVM, ELM are used. The features such as mean, variance, Coefficient of Local Variation Feature, Histogram Feature, NMSID Feature, and Homogeneity are extracted and these features are used to train the classifiers such as ELM and SVM. The results are compared with the ground truth images obtained from the radiologist and the performance measure such as accuracy is evaluated. It is observed that the segmentation using ELM is better than SVM classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RxX发布了新的文献求助10
1秒前
Orange应助louis136116采纳,获得10
1秒前
jiayu123发布了新的文献求助10
1秒前
3秒前
4秒前
zhoup完成签到,获得积分20
4秒前
vic发布了新的文献求助10
4秒前
Garnieta完成签到,获得积分10
5秒前
6秒前
6秒前
jiayu123完成签到,获得积分10
7秒前
桐桐应助老迟到的沛萍采纳,获得10
7秒前
7秒前
cbx发布了新的文献求助10
8秒前
iiiau发布了新的文献求助10
8秒前
Michi完成签到,获得积分20
10秒前
Aaron发布了新的文献求助10
11秒前
11秒前
是孤光呀发布了新的文献求助50
12秒前
我爱学习发布了新的文献求助10
12秒前
12秒前
15秒前
失眠水风发布了新的文献求助80
15秒前
16秒前
刘洪均发布了新的文献求助10
17秒前
17秒前
落后谷兰发布了新的文献求助10
19秒前
我爱学习完成签到,获得积分10
20秒前
21秒前
思源应助丫丫采纳,获得10
21秒前
21秒前
21秒前
memedaaaah发布了新的文献求助10
22秒前
老迟到的金鱼应助qingsyxuan采纳,获得10
22秒前
23秒前
25秒前
冷艳芯发布了新的文献求助10
25秒前
25秒前
大个应助核桃采纳,获得10
25秒前
共享精神应助核桃采纳,获得10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305