Random N-Finder (N-FINDR) Endmember Extraction Algorithms for Hyperspectral Imagery

端元 交叉口(航空) 高光谱成像 计算机科学 集合(抽象数据类型) 实现(概率) 算法 人工智能 图像(数学) 降维 模式识别(心理学) 维数(图论) 计算机视觉 数学 地理 组合数学 统计 地图学 程序设计语言
作者
Chein-l Chang,Chao-Cheng Wu,Ching-Tsorng Tsai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 641-656 被引量:66
标识
DOI:10.1109/tip.2010.2071310
摘要

N-finder algorithm (N-FINDR) has been widely used in endmember extraction. When it comes to implementation several issues need to be addressed. One is determination of endmembers, p required for N-FINDR to generate. Another is its computational complexity resulting from an exhaustive search. A third one is its requirement of dimensionality reduction. A fourth and probably the most critical issue is its use of random initial endmembers which results in inconsistent final endmember selection and results are not reproducible. This paper re-invents the wheel by re-designing the N-FINDR in such a way that all the above-mentioned issues can be resolved while making the last issue an advantage. The idea is to implement the N-FINDR as a random algorithm, called random N-FINDR (RN-FINDR) so that a single run using one set of random initial endmembers is considered as one realization. If there is an endmember present in the data, it should appear in any realization regardless of what random set of initial endmembers is used. In this case, the N-FINDR is terminated when the intersection of all realizations produced by two consecutive runs of RN-FINDR remains the same in which case the p is then automatically determined by the intersection set without appealing for any criterion. In order to substantiate the proposed RN-FINDR custom-designed synthetic image experiments with complete knowledge are conducted for validation and real image experiments are also performed to demonstrate its utility in applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
B站萧亚轩发布了新的文献求助10
刚刚
Akim应助mono采纳,获得10
1秒前
1秒前
轻松的语海完成签到,获得积分10
1秒前
十一完成签到,获得积分10
3秒前
Jack发布了新的文献求助10
3秒前
香蕉觅云应助wsqg123采纳,获得10
3秒前
甜甜玫瑰发布了新的文献求助10
3秒前
3秒前
4秒前
受伤坤关注了科研通微信公众号
4秒前
4秒前
4秒前
luoshiyi发布了新的文献求助10
5秒前
bkagyin应助liminliminlimin采纳,获得30
5秒前
Mida应助温暖的子骞采纳,获得10
5秒前
wxh发布了新的文献求助20
5秒前
英俊的铭应助再学一分钟采纳,获得10
6秒前
科目三应助jogrgr采纳,获得20
6秒前
adolph完成签到,获得积分10
6秒前
窝窝头完成签到,获得积分10
6秒前
飞快的惜芹完成签到,获得积分10
7秒前
称心不尤完成签到,获得积分10
8秒前
小耳朵发布了新的文献求助10
9秒前
9秒前
thousandlong发布了新的文献求助10
9秒前
淅淅沥沥发布了新的文献求助10
10秒前
!!!发布了新的文献求助10
10秒前
11秒前
11秒前
白潇潇完成签到 ,获得积分10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
小小油应助科研通管家采纳,获得50
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
wy.he应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
13秒前
JamesPei应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905