An Overview of Noise-Robust Automatic Speech Recognition

计算机科学 噪音(视频) 语音识别 失真(音乐) 领域(数学) 稳健性(进化) 过程(计算) 语音处理 人工智能 电信 数学 生物化学 基因 操作系统 图像(数学) 化学 放大器 纯数学 带宽(计算)
作者
Jinyu Li,Li Deng,Yifan Gong,Reinhold Haeb‐Umbach
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 745-777 被引量:530
标识
DOI:10.1109/taslp.2014.2304637
摘要

New waves of consumer-centric applications, such as voice search and voice interaction with mobile devices and home entertainment systems, increasingly require automatic speech recognition (ASR) to be robust to the full range of real-world noise and other acoustic distorting conditions. Despite its practical importance, however, the inherent links between and distinctions among the myriad of methods for noise-robust ASR have yet to be carefully studied in order to advance the field further. To this end, it is critical to establish a solid, consistent, and common mathematical foundation for noise-robust ASR, which is lacking at present. This article is intended to fill this gap and to provide a thorough overview of modern noise-robust techniques for ASR developed over the past 30 years. We emphasize methods that are proven to be successful and that are likely to sustain or expand their future applicability. We distill key insights from our comprehensive overview in this field and take a fresh look at a few old problems, which nevertheless are still highly relevant today. Specifically, we have analyzed and categorized a wide range of noise-robust techniques using five different criteria: 1) feature-domain vs. model-domain processing, 2) the use of prior knowledge about the acoustic environment distortion, 3) the use of explicit environment-distortion models, 4) deterministic vs. uncertainty processing, and 5) the use of acoustic models trained jointly with the same feature enhancement or model adaptation process used in the testing stage. With this taxonomy-oriented review, we equip the reader with the insight to choose among techniques and with the awareness of the performance-complexity tradeoffs. The pros and cons of using different noise-robust ASR techniques in practical application scenarios are provided as a guide to interested practitioners. The current challenges and future research directions in this field is also carefully analyzed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助土豪的书蝶采纳,获得10
1秒前
粗心的新之完成签到,获得积分10
3秒前
4秒前
哇咔咔完成签到,获得积分10
4秒前
5秒前
可爱的函函应助光亮芷天采纳,获得10
6秒前
哇哇哇哇发布了新的文献求助10
6秒前
小博发布了新的文献求助10
7秒前
Lily发布了新的文献求助10
8秒前
9秒前
呼叫外星人完成签到,获得积分10
9秒前
9秒前
雾非雾完成签到,获得积分10
9秒前
黑斑理驱发布了新的文献求助10
10秒前
hhhhh应助城九寒采纳,获得30
11秒前
tanrui发布了新的文献求助10
11秒前
13秒前
yydtly发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
ahai发布了新的文献求助10
16秒前
隐形曼青应助lvsehx采纳,获得10
18秒前
爱刷牙的小熊完成签到 ,获得积分10
18秒前
19秒前
liam发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
lingling发布了新的文献求助10
21秒前
管箴发布了新的文献求助10
22秒前
22秒前
康KKKate完成签到 ,获得积分0
22秒前
tanrui完成签到,获得积分10
23秒前
25秒前
彭笑笑完成签到,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
狂野萤应助科研通管家采纳,获得10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265265
求助须知:如何正确求助?哪些是违规求助? 2905165
关于积分的说明 8333089
捐赠科研通 2575592
什么是DOI,文献DOI怎么找? 1399932
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471