Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality

纳米结构 等离子体子 材料科学 罗丹明6G 纳米复合材料 纳米技术 纳米颗粒 乙二醇 硼氢化钠 复合数 壳体(结构) 表面等离子共振 罗丹明B 催化作用 化学工程 光电子学 光催化 复合材料 化学 工程类 有机化学 分子
作者
Yunxia Zhang,Hualin Ding,Yanyan Liu,Shusheng Pan,Yuanyuan Luo,Guanghai Li
出处
期刊:Journal of Materials Chemistry [The Royal Society of Chemistry]
卷期号:22 (21): 10779-10779 被引量:87
标识
DOI:10.1039/c2jm16293h
摘要

A very simple protocol, which involves the chemical reduction of AgNO3 and Fe(NO3)3 with ethylene glycol as reducing agent, has been developed for synthesizing Ag@Fe3O4 core/shell nanostructures in which the silver nanoparticle core was covered by a thicker layer of the Fe3O4 nanoparticle shell. The obtained Ag@Fe3O4 core/shell nanostructures simultaneously possess both strong magnetic responsiveness and tunable plasmonic properties. The plasmonic properties of the composite nanospheres are profoundly influenced by the high dielectric constant of the outer Fe3O4 shell layer and could be conveniently modulated over a broad spectral range spanning from the ultraviolet to near-infrared (NIR) regions (789 nm) by simply altering the thickness of the Fe3O4 shell. The localized surface plasmon resonances of the core/shell nanocomposites red-shifted with increasing thickness of the Fe3O4 shell. The morphology transformation of the Ag/Fe3O4 nanocomposites from core/shell structures with a continuous dense coating to flower-like nanostructures also allows the tuning of their plasmonic properties to be blue-shifted (to 510 nm). Catalytic degradation of rhodamine 6G (R6G) experiments show that the Ag/Fe3O4 composite nanostructures exhibit high catalytic activity by sodium borohydride. Due to the efficient optical response through localized surface plasmon resonances, the catalytic performance from the silver core and external magnetic manipulation from the Fe3O4 shell, such multifunctional nanoparticles will provide an opportunity for simultaneous optical detection and catalytic reduction with the additional benefit of relatively facile recovery and regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大方嵩采纳,获得10
1秒前
英俊的铭应助大方嵩采纳,获得10
1秒前
李还好完成签到,获得积分10
2秒前
满意的柏柳完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
buno应助88采纳,获得10
5秒前
6秒前
三千世界完成签到,获得积分10
6秒前
6秒前
愉快的访旋完成签到,获得积分10
7秒前
Alpha完成签到,获得积分10
8秒前
大大发布了新的文献求助30
8秒前
翠翠发布了新的文献求助10
9秒前
半山发布了新的文献求助10
10秒前
10秒前
天天快乐应助CO2采纳,获得10
10秒前
隐形曼青应助junzilan采纳,获得10
11秒前
Dksido发布了新的文献求助10
11秒前
12秒前
思源应助卓哥采纳,获得10
12秒前
mysci完成签到,获得积分10
15秒前
16秒前
Quzhengkai发布了新的文献求助10
17秒前
17秒前
18秒前
落寞晓灵完成签到,获得积分10
18秒前
ORAzzz应助翠翠采纳,获得20
19秒前
zoe完成签到,获得积分10
19秒前
习习应助学术小白采纳,获得10
19秒前
20秒前
21秒前
tianny关注了科研通微信公众号
22秒前
22秒前
CO2发布了新的文献求助10
22秒前
桐桐应助zhangscience采纳,获得10
23秒前
求助发布了新的文献求助10
24秒前
buno应助zoe采纳,获得10
25秒前
junzilan发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808