亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery

遥感 阈值 科恩卡帕 环境科学 土地覆盖 水萃取 影子(心理学) 归一化差异植被指数 人工智能 萃取(化学) 地质学 计算机科学 图像(数学) 土地利用 机器学习 工程类 心理治疗师 气候变化 海洋学 土木工程 心理学 化学 色谱法
作者
Gudina Legese Feyisa,Henrik Meilby,Rasmus Fensholt,Simon Proud
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:140: 23-35 被引量:1688
标识
DOI:10.1016/j.rse.2013.08.029
摘要

Classifying surface cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic classification tasks is to distinguish water bodies from dry land surfaces. Landsat imagery is among the most widely used sources of data in remote sensing of water resources; and although several techniques of surface water extraction using Landsat data are described in the literature, their application is constrained by low accuracy in various situations. Besides, with the use of techniques such as single band thresholding and two-band indices, identifying an appropriate threshold yielding the highest possible accuracy is a challenging and time consuming task, as threshold values vary with location and time of image acquisition. The purpose of this study was therefore to devise an index that consistently improves water extraction accuracy in the presence of various sorts of environmental noise and at the same time offers a stable threshold value. Thus we introduced a new Automated Water Extraction Index (AWEI) improving classification accuracy in areas that include shadow and dark surfaces that other classification methods often fail to classify correctly. We tested the accuracy and robustness of the new method using Landsat 5 TM images of several water bodies in Denmark, Switzerland, Ethiopia, South Africa and New Zealand. Kappa coefficient, omission and commission errors were calculated to evaluate accuracies. The performance of the classifier was compared with that of the Modified Normalized Difference Water Index (MNDWI) and Maximum Likelihood (ML) classifiers. In four out of five test sites, classification accuracy of AWEI was significantly higher than that of MNDWI and ML (P-value < 0.01). AWEI improved accuracy by lessening commission and omission errors by 50% compared to those resulting from MNDWI and about 25% compared to ML classifiers. Besides, the new method was shown to have a fairly stable optimal threshold value. Therefore, AWEI can be used for extracting water with high accuracy, especially in mountainous areas where deep shadow caused by the terrain is an important source of classification error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
輕瘋完成签到,获得积分10
刚刚
尊敬的凝丹完成签到 ,获得积分10
1秒前
2秒前
alaa发布了新的文献求助10
8秒前
9秒前
可爱的函函应助小马采纳,获得10
10秒前
面影如春完成签到,获得积分10
10秒前
慕青应助田子廉采纳,获得10
13秒前
bbhk完成签到,获得积分10
16秒前
18秒前
21秒前
小马发布了新的文献求助10
28秒前
alaa完成签到,获得积分20
32秒前
hll发布了新的文献求助10
34秒前
36秒前
38秒前
付津顺发布了新的文献求助10
42秒前
Hello应助guyutang采纳,获得10
45秒前
Twistti完成签到,获得积分10
46秒前
谐音梗别扣钱完成签到 ,获得积分10
47秒前
Zoe完成签到 ,获得积分10
52秒前
53秒前
大个应助小马采纳,获得10
53秒前
付津顺完成签到,获得积分10
54秒前
大帅哥完成签到 ,获得积分10
55秒前
zhongbo发布了新的文献求助10
57秒前
57秒前
59秒前
小马发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助hll采纳,获得10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
1分钟前
田子廉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ava应助田子廉采纳,获得10
1分钟前
科研通AI6应助ccccc采纳,获得10
1分钟前
1分钟前
minhdh完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872