Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery

遥感 阈值 科恩卡帕 环境科学 土地覆盖 水萃取 影子(心理学) 归一化差异植被指数 人工智能 萃取(化学) 地质学 计算机科学 图像(数学) 土地利用 机器学习 工程类 心理治疗师 气候变化 海洋学 土木工程 心理学 化学 色谱法
作者
Gudina Legese Feyisa,Henrik Meilby,Rasmus Fensholt,Simon Proud
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:140: 23-35 被引量:1688
标识
DOI:10.1016/j.rse.2013.08.029
摘要

Classifying surface cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic classification tasks is to distinguish water bodies from dry land surfaces. Landsat imagery is among the most widely used sources of data in remote sensing of water resources; and although several techniques of surface water extraction using Landsat data are described in the literature, their application is constrained by low accuracy in various situations. Besides, with the use of techniques such as single band thresholding and two-band indices, identifying an appropriate threshold yielding the highest possible accuracy is a challenging and time consuming task, as threshold values vary with location and time of image acquisition. The purpose of this study was therefore to devise an index that consistently improves water extraction accuracy in the presence of various sorts of environmental noise and at the same time offers a stable threshold value. Thus we introduced a new Automated Water Extraction Index (AWEI) improving classification accuracy in areas that include shadow and dark surfaces that other classification methods often fail to classify correctly. We tested the accuracy and robustness of the new method using Landsat 5 TM images of several water bodies in Denmark, Switzerland, Ethiopia, South Africa and New Zealand. Kappa coefficient, omission and commission errors were calculated to evaluate accuracies. The performance of the classifier was compared with that of the Modified Normalized Difference Water Index (MNDWI) and Maximum Likelihood (ML) classifiers. In four out of five test sites, classification accuracy of AWEI was significantly higher than that of MNDWI and ML (P-value < 0.01). AWEI improved accuracy by lessening commission and omission errors by 50% compared to those resulting from MNDWI and about 25% compared to ML classifiers. Besides, the new method was shown to have a fairly stable optimal threshold value. Therefore, AWEI can be used for extracting water with high accuracy, especially in mountainous areas where deep shadow caused by the terrain is an important source of classification error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
fanfan发布了新的文献求助10
1秒前
小陈完成签到,获得积分10
2秒前
淳于文昊发布了新的文献求助10
2秒前
贾111完成签到 ,获得积分10
3秒前
3秒前
起风了777完成签到,获得积分10
3秒前
apple完成签到,获得积分10
3秒前
4秒前
小宇仔完成签到,获得积分10
4秒前
Monody完成签到,获得积分10
4秒前
hy发布了新的文献求助10
5秒前
zh20130发布了新的文献求助10
5秒前
5秒前
浮游应助聪明藏今采纳,获得10
5秒前
5秒前
浮游应助7890733采纳,获得10
6秒前
科目三应助7890733采纳,获得10
6秒前
茹茹完成签到 ,获得积分10
6秒前
地瓜小菜发布了新的文献求助10
6秒前
小宁完成签到,获得积分10
6秒前
6秒前
子暮完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI5应助典雅的俊驰采纳,获得10
7秒前
La完成签到 ,获得积分10
8秒前
优雅盼海发布了新的文献求助10
8秒前
9秒前
undo完成签到 ,获得积分10
9秒前
肖林完成签到,获得积分10
9秒前
10秒前
keyanqianjin发布了新的文献求助10
10秒前
淳于文昊完成签到,获得积分10
10秒前
玩命的书兰完成签到 ,获得积分10
10秒前
12秒前
开放冰露发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869