Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery

遥感 阈值 科恩卡帕 环境科学 土地覆盖 水萃取 影子(心理学) 归一化差异植被指数 人工智能 萃取(化学) 地质学 计算机科学 图像(数学) 土地利用 机器学习 工程类 气候变化 土木工程 海洋学 色谱法 化学 心理治疗师 心理学
作者
Gudina Legese Feyisa,Henrik Meilby,Rasmus Fensholt,Simon Proud
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:140: 23-35 被引量:1263
标识
DOI:10.1016/j.rse.2013.08.029
摘要

Classifying surface cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic classification tasks is to distinguish water bodies from dry land surfaces. Landsat imagery is among the most widely used sources of data in remote sensing of water resources; and although several techniques of surface water extraction using Landsat data are described in the literature, their application is constrained by low accuracy in various situations. Besides, with the use of techniques such as single band thresholding and two-band indices, identifying an appropriate threshold yielding the highest possible accuracy is a challenging and time consuming task, as threshold values vary with location and time of image acquisition. The purpose of this study was therefore to devise an index that consistently improves water extraction accuracy in the presence of various sorts of environmental noise and at the same time offers a stable threshold value. Thus we introduced a new Automated Water Extraction Index (AWEI) improving classification accuracy in areas that include shadow and dark surfaces that other classification methods often fail to classify correctly. We tested the accuracy and robustness of the new method using Landsat 5 TM images of several water bodies in Denmark, Switzerland, Ethiopia, South Africa and New Zealand. Kappa coefficient, omission and commission errors were calculated to evaluate accuracies. The performance of the classifier was compared with that of the Modified Normalized Difference Water Index (MNDWI) and Maximum Likelihood (ML) classifiers. In four out of five test sites, classification accuracy of AWEI was significantly higher than that of MNDWI and ML (P-value < 0.01). AWEI improved accuracy by lessening commission and omission errors by 50% compared to those resulting from MNDWI and about 25% compared to ML classifiers. Besides, the new method was shown to have a fairly stable optimal threshold value. Therefore, AWEI can be used for extracting water with high accuracy, especially in mountainous areas where deep shadow caused by the terrain is an important source of classification error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
球球发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
zhangjiabin发布了新的文献求助10
4秒前
4秒前
老八发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
火山羊发布了新的文献求助10
6秒前
若水发布了新的文献求助15
6秒前
提拉米草发布了新的文献求助10
6秒前
7秒前
Luffa完成签到,获得积分10
7秒前
呐呐发布了新的文献求助10
7秒前
WENYY发布了新的文献求助30
7秒前
8秒前
8秒前
晚庭落秋风完成签到,获得积分20
9秒前
科研通AI2S应助白科研采纳,获得10
9秒前
赘婿应助1Aaa采纳,获得10
12秒前
vincentbioinfo完成签到,获得积分10
13秒前
tutulunzi完成签到,获得积分10
13秒前
老隋完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
zzz完成签到,获得积分10
16秒前
16秒前
17秒前
zhangxian0426发布了新的文献求助10
18秒前
18秒前
zhangjiabin完成签到,获得积分10
19秒前
19秒前
bwts发布了新的文献求助10
21秒前
CM发布了新的文献求助10
21秒前
可爱的函函应助一颗树采纳,获得10
22秒前
22秒前
JOUJOU完成签到,获得积分20
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600