Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征提取 深度学习 领域(数学分析) 机器学习 数学 语言学 操作系统 数学分析 哲学
作者
Haibo Wang,Ángel Cruz-Roa,Ajay Basavanhally,Hannah Gilmore,Natalie Shih,Mike Feldman,John Tomaszewski,Fabio A. González,Anant Madabhushi
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:1 (3): 034003-034003 被引量:325
标识
DOI:10.1117/1.jmi.1.3.034003
摘要

Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually by a pathologist looking at multiple high power fields (HPFs) on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical, or textural attributes of mitoses or features learned with convolutional neural networks (CNN). Although handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely supervised feature generation methods, there is an appeal in attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. We present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color, and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing the performance by leveraging the disconnected feature sets. Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 HPFs ([Formula: see text] magnification) by several pathologists and 15 testing HPFs yielded an [Formula: see text]-measure of 0.7345. Our approach is accurate, fast, and requires fewer computing resources compared to existent methods, making this feasible for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到 ,获得积分10
1秒前
2秒前
琪琪扬扬发布了新的文献求助10
2秒前
4秒前
钧清完成签到,获得积分10
5秒前
丰富的宛亦完成签到 ,获得积分10
6秒前
6秒前
6秒前
汉堡包应助安然采纳,获得10
8秒前
科研通AI5应助ABS采纳,获得30
8秒前
科研通AI5应助小菜鸡采纳,获得100
8秒前
林一贰叁完成签到,获得积分10
9秒前
失眠的仙人掌给失眠的仙人掌的求助进行了留言
10秒前
10秒前
11秒前
王相一发布了新的文献求助50
11秒前
Jasper应助134采纳,获得10
13秒前
宋小威完成签到,获得积分10
13秒前
情怀应助lulululululu采纳,获得10
13秒前
努力的小杜应助安然采纳,获得10
13秒前
干净语梦发布了新的文献求助10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
shinysparrow应助科研通管家采纳,获得100
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
笑而不语完成签到 ,获得积分10
17秒前
18秒前
19秒前
ABS发布了新的文献求助30
19秒前
小菜鸡发布了新的文献求助100
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009