Turbulence characteristics of particle-laden pipe flow

湍流 机械 湍流动能 雷诺应力 雷诺数 消散 Kε湍流模型 物理 剪应力 材料科学 热力学
作者
A.W. Vreman
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:584: 235-279 被引量:122
标识
DOI:10.1017/s0022112007006556
摘要

Turbulence characteristics of vertical air–solid pipe flow are investigated in this paper. Direct numerical simulations of the gas phase have been performed, while the solid particles have been simulated by a Lagrangian approach, including particle collisions. The modelling of wall roughness is shown to be important to obtain agreement with experimental data. Reynolds stresses and Reynolds stress budgets are given for both phases and for a wide range of solid–air mass load ratios (mass loads), varying from 0.11 to 30. Air turbulence intensities, Reynolds shear stress, and turbulence production reduce with increasing mass load. The mean air profile does not alter for low mass loads. In this regime, a simple theory predicts that the reduction of air turbulent production relative to unladen turbulent production is approximately equal to the mass load ratio. The insight that the solids Reynolds shear stress can be significant, even for low mass loads, is essential for this explanation. It is shown that at least two mechanisms cause the turbulence reduction. In addition to the classically recognized mechanism of dissipation of turbulent fluctuations by particles, there is another suppressing mechanism in inhomogeneous flows: the non-uniform relative velocity of the phases, created because particles slip at the wall, collide, and slowly react with the continuous phase. Investigation of the air turbulent kinetic energy equation demonstrates that the relative reduction of air pressure strain is larger than the reduction of turbulent production and dissipation, and pressure strain may therefore be a cause of the reduction of the other quantities. The fluctuational dissipation induced by the drag forces from particles is small compared to the other terms, but not negligible. For intermediate and high mass loads the air turbulence remains low. The relatively small turbulence intensities are not generated by the standard turbulent mechanisms any more, but directly caused by the particle motions. The particle–fluid interaction term in the turbulent kinetic energy equation is no longer dissipative, but productive instead. On increasing the mass load, the radial and azimuthal fluctuations of the particles grow. The corresponding reduction of solids anisotropy is an effect of the inter-particle collisions, which act as a solids pressure strain term. For intermediate and high mass loads, fluctuational drag force and particle collisions appear to be the relevant dissipation mechanisms in the solids fluctuational energy equation. In contrast to the air turbulent production, the solids ‘turbulent’ production term has the same level for low and high mass loads, while it attains a clear local minimum between. With increasing mass load, large-scale coherent turbulent fluid structures weaken, and eventually disappear. Simultaneously, the fluid fluctuations at relatively small length scales are enhanced by the motion of the particles. The highest particle concentration occurs near the wall for low mass loads, but on increasing the mass load, the concentration profile becomes uniform, while for the highest mass load particles accumulate in the centre of the pipe. Two-point correlation functions indicate that the addition of a small number of small solid particles to a clean pipe flow increases the streamwise length scale of the turbulence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海风发布了新的文献求助10
刚刚
1秒前
赘婿应助小冉采纳,获得10
1秒前
科研通AI5应助杨杨杨采纳,获得10
1秒前
烫睫毛完成签到 ,获得积分10
1秒前
xiaoming发布了新的文献求助10
1秒前
思源应助吴五五采纳,获得10
2秒前
加拿大一枝黄花完成签到,获得积分10
2秒前
EunolusZ完成签到,获得积分10
2秒前
2秒前
成就莞完成签到,获得积分10
2秒前
Ww完成签到,获得积分10
3秒前
yaoyao发布了新的文献求助10
3秒前
3秒前
佰斯特威发布了新的文献求助30
4秒前
Dawn发布了新的文献求助10
4秒前
4秒前
认真的可冥完成签到,获得积分10
5秒前
5秒前
6秒前
silong发布了新的文献求助10
6秒前
HITvagary完成签到,获得积分10
6秒前
华仔应助欣喜访旋采纳,获得10
6秒前
6秒前
7秒前
良辰应助科研cc采纳,获得10
7秒前
NN应助西门晴采纳,获得10
7秒前
瘦瘦白昼发布了新的文献求助10
7秒前
1111应助科研小民工采纳,获得20
8秒前
逸风望完成签到,获得积分10
8秒前
8秒前
9秒前
慕青应助开朗的慕儿采纳,获得10
9秒前
9秒前
YAOYAO完成签到,获得积分0
9秒前
紫色系完成签到,获得积分10
9秒前
黄豆芽发布了新的文献求助10
10秒前
10秒前
Jin完成签到,获得积分10
11秒前
Akim应助外向如冬采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672