A Robust Approach for Blind Detection of Balanced Chromosomal Rearrangements with Whole-Genome Low-Coverage Sequencing

生物 假阳性悖论 计算生物学 断点 基因组 错误发现率 结构变异 全基因组测序 核型 染色体 DNA测序 遗传学 计算机科学 人工智能 基因
作者
Zirui Dong,Lupin Jiang,Chuanchun Yang,Hua Hu,Xiuhua Wang,Haixiao Chen,Kwong Wai Choy,Huamei Hu,Yanling Dong,Bin Hu,Juchun Xu,Yang Long,Sujie Cao,Hui Chen,Wenjing Wang,Hui Jiang,Fengping Xu,Hong Yao,Xun Xu,Zhiqing Liang
出处
期刊:Human Mutation [Wiley]
卷期号:35 (5): 625-636 被引量:75
标识
DOI:10.1002/humu.22541
摘要

Balanced chromosomal rearrangement (or balanced chromosome abnormality, BCA) is a common chromosomal structural variation. Next-generation sequencing has been reported to detect BCA-associated breakpoints with the aid of karyotyping. However, the complications associated with this approach and the requirement for cytogenetics information has limited its application. Here, we provide a whole-genome low-coverage sequencing approach to detect BCA events independent of knowing the affected regions and with low false positives. First, six samples containing BCAs were used to establish a detection protocol and assess the efficacy of different library construction approaches. By clustering anomalous read pairs and filtering out the false-positive results with a control cohort and the concomitant mapping information, we could directly detect BCA events for each sample. Through optimizing the read depth, BCAs in all samples could be blindly detected with only 120 million read pairs per sample for data from a small-insert library and 30 million per sample for data from nonsize-selected mate-pair library. This approach was further validated using another 13 samples that contained BCAs. Our approach advances the application of high-throughput whole-genome low-coverage analysis for robust BCA detection-especially for clinical samples-without the need for karyotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路之遥兮完成签到,获得积分20
刚刚
波波玛奇朵完成签到,获得积分10
刚刚
深情安青应助小宇采纳,获得10
刚刚
小星星完成签到 ,获得积分0
刚刚
1秒前
1秒前
Ziyi_Xu完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
yx完成签到,获得积分0
1秒前
2秒前
Li完成签到,获得积分10
2秒前
PTL发布了新的文献求助10
2秒前
2秒前
努力学习完成签到,获得积分10
2秒前
理工完成签到,获得积分10
2秒前
乐乐完成签到,获得积分10
3秒前
赘婿应助鹿茸采纳,获得10
3秒前
17808352679完成签到,获得积分20
3秒前
3秒前
5秒前
嗯哼完成签到 ,获得积分10
5秒前
5秒前
PANGHU发布了新的文献求助10
5秒前
上官若男应助我心如铁石采纳,获得10
5秒前
理工发布了新的文献求助10
5秒前
123发布了新的文献求助30
6秒前
6秒前
chen完成签到,获得积分20
6秒前
严怜梦完成签到 ,获得积分10
6秒前
领导范儿应助einuo采纳,获得10
6秒前
浩浩大人发布了新的文献求助10
6秒前
找不到发布了新的文献求助10
6秒前
欣喜访旋发布了新的文献求助10
6秒前
Yolo发布了新的文献求助10
6秒前
lanlan完成签到,获得积分10
6秒前
帅冰冰冰完成签到,获得积分10
7秒前
Orange应助liyi采纳,获得10
7秒前
dsjlove完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672