Score normalization in multimodal biometric systems

规范化(社会学) 生物识别 计算机科学 人工智能 模式识别(心理学) 离群值 数据挖掘 人类学 社会学
作者
Anil K. Jain,Karthik Nandakumar,Arun Ross
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:38 (12): 2270-2285 被引量:1736
标识
DOI:10.1016/j.patcog.2005.01.012
摘要

Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. Although information fusion in a multimodal system can be performed at various levels, integration at the matching score level is the most common approach due to the ease in accessing and combining the scores generated by different matchers. Since the matching scores output by the various modalities are heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining them. In this paper, we have studied the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user. Experiments conducted on a database of 100 users indicate that the application of min–max, z -score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods. However, experiments also reveal that the min–max and z -score normalization techniques are sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better compared to systems that assign the same set of weights to the multiple biometric traits of all users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五十完成签到,获得积分10
1秒前
Wxxxxx完成签到 ,获得积分10
1秒前
木木完成签到,获得积分10
1秒前
2秒前
3秒前
yangjoy发布了新的文献求助10
4秒前
wanci应助老实的采蓝采纳,获得10
5秒前
威哥完成签到,获得积分10
6秒前
斯可发布了新的文献求助10
6秒前
桐桐应助lh961129采纳,获得10
7秒前
JUZI发布了新的文献求助10
8秒前
Lendar完成签到 ,获得积分10
8秒前
RuiBigHead发布了新的文献求助10
9秒前
10秒前
跳跃的洋葱完成签到 ,获得积分10
10秒前
10秒前
yangjoy完成签到,获得积分10
11秒前
pinklay完成签到 ,获得积分10
11秒前
11秒前
科研通AI5应助ttt采纳,获得10
12秒前
重要问旋完成签到,获得积分10
12秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得30
14秒前
老阎应助科研通管家采纳,获得30
14秒前
姜莹应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
ED应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066