亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Score normalization in multimodal biometric systems

规范化(社会学) 生物识别 计算机科学 人工智能 模式识别(心理学) 离群值 数据挖掘 人类学 社会学
作者
Anil K. Jain,Karthik Nandakumar,Arun Ross
出处
期刊:Pattern Recognition [Elsevier]
卷期号:38 (12): 2270-2285 被引量:1736
标识
DOI:10.1016/j.patcog.2005.01.012
摘要

Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. Although information fusion in a multimodal system can be performed at various levels, integration at the matching score level is the most common approach due to the ease in accessing and combining the scores generated by different matchers. Since the matching scores output by the various modalities are heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining them. In this paper, we have studied the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user. Experiments conducted on a database of 100 users indicate that the application of min–max, z -score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods. However, experiments also reveal that the min–max and z -score normalization techniques are sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better compared to systems that assign the same set of weights to the multiple biometric traits of all users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分20
5秒前
cc完成签到,获得积分10
7秒前
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
Jasper应助阳光的星月采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助朴素海亦采纳,获得10
1分钟前
方汀应助朴素海亦采纳,获得10
2分钟前
2分钟前
dd完成签到,获得积分10
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
荷兰香猪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
阳光的星月完成签到,获得积分10
3分钟前
研友_8RyzBZ完成签到,获得积分20
3分钟前
3分钟前
3分钟前
huahuaaixuexi完成签到,获得积分10
4分钟前
4分钟前
情怀应助成成鹅了采纳,获得10
4分钟前
苗龙伟完成签到 ,获得积分10
4分钟前
dd发布了新的文献求助200
4分钟前
852应助成成鹅了采纳,获得30
4分钟前
林妹妹完成签到 ,获得积分10
4分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
冷酷的如松完成签到,获得积分10
5分钟前
5分钟前
成成鹅了发布了新的文献求助10
5分钟前
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
成成鹅了发布了新的文献求助30
5分钟前
LX1005完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107