Score normalization in multimodal biometric systems

规范化(社会学) 生物识别 计算机科学 人工智能 模式识别(心理学) 离群值 数据挖掘 人类学 社会学
作者
Anil K. Jain,Karthik Nandakumar,Arun Ross
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:38 (12): 2270-2285 被引量:1736
标识
DOI:10.1016/j.patcog.2005.01.012
摘要

Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. Although information fusion in a multimodal system can be performed at various levels, integration at the matching score level is the most common approach due to the ease in accessing and combining the scores generated by different matchers. Since the matching scores output by the various modalities are heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining them. In this paper, we have studied the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user. Experiments conducted on a database of 100 users indicate that the application of min–max, z -score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods. However, experiments also reveal that the min–max and z -score normalization techniques are sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better compared to systems that assign the same set of weights to the multiple biometric traits of all users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZICU完成签到,获得积分10
1秒前
yun尘世发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
罗拉发布了新的文献求助10
4秒前
5秒前
5秒前
鱼e完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
song发布了新的文献求助10
10秒前
ding应助时尚初之采纳,获得10
10秒前
罗拉完成签到,获得积分10
10秒前
10秒前
11秒前
yun尘世完成签到,获得积分10
12秒前
12秒前
自信南霜完成签到,获得积分10
12秒前
tingting9完成签到,获得积分10
15秒前
15秒前
16秒前
卡布奇诺完成签到,获得积分10
16秒前
13223456发布了新的文献求助10
16秒前
青山落日秋月春风完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
小马甲应助动听的雅绿采纳,获得30
21秒前
1177发布了新的文献求助10
23秒前
23秒前
喜喵喵完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
11关注了科研通微信公众号
25秒前
123456完成签到,获得积分10
26秒前
时尚初之发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136