Simulating urban growth in a metropolitan area based on weighted urban flows by using web search engine

大都市区 地理 计算机科学 地图学 区域科学 运输工程 万维网 工程类 考古
作者
Jinyao Lin,Xia Li
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:29 (10): 1721-1736 被引量:36
标识
DOI:10.1080/13658816.2015.1034721
摘要

As a consequence of rapid and immoderate urbanization, simulating urban growth in metropolitan areas effectively becomes a crucial and yet difficult task. Cellular automata (CA) model is an attractive tool for understanding complex geographical phenomena. Although intercity urban flows, the key factors in metropolitan development, have already been taken into consideration in CA models, there is still room for improvement because the influences of urban flows may not necessarily follow the distance decay relationship and may change over time. A feasible solution is to define the weights of intercity urban flows. Therefore, this study presents a novel method based on weighted urban flows (CAWeightedFlow) with the support of web search engine. The relatedness measured by the co-occurrences of the cities' names (toponyms) on massive web pages can be deemed as the weights of intercity urban flows. After applying the weights, the gravitational field model is integrated with Logistic-CA to fulfill the modeling task. This method is employed to the urban growth simulation in the Pearl River Delta, one of the most urbanized metropolitan areas in China, from 2005 to 2008. The results indicate that our method outperforms traditional methods with respect to two measures of calibration goodness-of-fit. For example, CAWeightedFlow can yield the best value of 'figure of merit'. Moreover, the proposed method can be further used to explore various development possibilities by simply changing the weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
刚刚
huanhuan完成签到,获得积分10
1秒前
小刘不笨完成签到,获得积分10
1秒前
吕绪特完成签到 ,获得积分10
1秒前
2秒前
愉快的夏菡完成签到,获得积分10
2秒前
研友_gnv61n完成签到,获得积分10
2秒前
zmy完成签到,获得积分10
2秒前
小蘑菇应助守约采纳,获得10
3秒前
3秒前
空白发布了新的文献求助10
4秒前
buno应助721采纳,获得20
4秒前
石阶上完成签到 ,获得积分10
4秒前
du完成签到 ,获得积分10
4秒前
Xu完成签到,获得积分10
5秒前
mmmm完成签到,获得积分10
5秒前
5秒前
情怀应助YY采纳,获得10
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
Akim应助xiaokezhang采纳,获得10
6秒前
6秒前
柠木完成签到 ,获得积分10
6秒前
系统提示发布了新的文献求助10
6秒前
marigold完成签到,获得积分10
6秒前
Gaoge完成签到,获得积分10
7秒前
愉快的无招完成签到,获得积分10
7秒前
7秒前
HEIKU应助习习采纳,获得10
8秒前
8秒前
8秒前
8秒前
合适苗条完成签到,获得积分10
8秒前
Zn应助开水泡饼采纳,获得10
8秒前
科目三应助Liu采纳,获得10
9秒前
9秒前
eating完成签到,获得积分10
9秒前
李双艳完成签到,获得积分10
9秒前
英姑应助科研混子采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678