Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics

容量损失 电解质 电极 锂(药物) 降级(电信) 电化学 石墨 材料科学 电池(电) 扩散 自行车 相间 化学分解 分解 化学工程 复合材料 热力学 工程类 物理 化学 电气工程 有机化学 医学 生物 遗传学 考古 内分泌学 历史 物理化学 功率(物理)
作者
Rutooj D. Deshpande,Mark W. Verbrugge,Yang‐Tse Cheng,John Wang,Ping Liu
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:159 (10): A1730-A1738 被引量:316
标识
DOI:10.1149/2.049210jes
摘要

Coupled mechanical-chemical degradation of electrodes upon charging and discharging has been recognized as a major failure mechanism in lithium ion batteries. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition, SEI formation consumes lithium and thus contributes to irreversible capacity loss. In this paper, we study irreversible capacity loss in a graphite-LiFePO4 cell. Our results support the mechanism of irreversible capacity loss due to the consumption of lithium in forming SEI. We attribute irreversible capacity loss to diffusion induced stresses (DISs) that cause pre-existing cracks on the electrode surfaces to grow gradually upon cycling, leading to the growth of SEI on the newly exposed electrode surfaces. Because lithium is consumed in forming the new SEI, irreversible capacity loss continues with cycling. Along with the SEI formation upon newly exposed (cracked) surfaces, the existing SEI thickness also grows with cycling, resulting in additional loss of lithium. In this study, we provide, a simple mathematical model, based on the Paris' Law formulation of mechanical fatigue, in combination with chemical degradation to explain battery life. We compare the predicted capacity at different temperatures with the experimental data obtained from electrochemical measurements on graphite-LiFePO4 cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
乐此不疲完成签到,获得积分20
1秒前
发文必中应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
songjin123完成签到,获得积分10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
Ava应助星空采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
大力猫崽完成签到 ,获得积分10
2秒前
2秒前
陈陈陈发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
赫连立果完成签到 ,获得积分10
3秒前
3秒前
SciGPT应助PigGyue采纳,获得10
4秒前
4秒前
伶俐的珊完成签到,获得积分10
4秒前
QH完成签到,获得积分10
5秒前
Jasper应助LadyGaga采纳,获得10
5秒前
5秒前
顺利寻菡发布了新的文献求助10
6秒前
时势造英雄完成签到 ,获得积分10
6秒前
9秒前
Elsa完成签到,获得积分10
10秒前
小张完成签到,获得积分10
10秒前
科研通AI2S应助安然采纳,获得10
10秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Migration and Wellbeing: Towards a More Inclusive World 900
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
The Making of Détente: Eastern Europe and Western Europe in the Cold War, 1965-75 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2911640
求助须知:如何正确求助?哪些是违规求助? 2546862
关于积分的说明 6892826
捐赠科研通 2211796
什么是DOI,文献DOI怎么找? 1175299
版权声明 588140
科研通“疑难数据库(出版商)”最低求助积分说明 575729