Global optimization of parameters in the reactive force field ReaxFF for SiOH

雷亚克夫 力场(虚构) 领域(数学) 计算机科学 遗传算法 集合(抽象数据类型) 算法 分子动力学 化学 计算化学 数学 人工智能 机器学习 程序设计语言 纯数学 原子间势
作者
Henrik R. Larsson,Adri C. T. van Duin,Bernd Hartke
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:34 (25): 2178-2189 被引量:83
标识
DOI:10.1002/jcc.23382
摘要

We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in-house GA code that is parallelized across reference data items via the message-passing interface (MPI). Details of GA tuning turn-ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive-ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force-field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小离发布了新的文献求助10
刚刚
CodeCraft应助艺玲采纳,获得10
刚刚
chenjyuu完成签到,获得积分10
1秒前
韭黄发布了新的文献求助10
1秒前
1秒前
子车雁开完成签到,获得积分10
1秒前
2秒前
2秒前
故意的傲玉应助经法采纳,获得10
3秒前
上官若男应助经法采纳,获得10
3秒前
buno应助经法采纳,获得10
3秒前
1111应助经法采纳,获得10
3秒前
Lucas应助经法采纳,获得10
3秒前
Jasper应助经法采纳,获得10
3秒前
3秒前
习习应助经法采纳,获得10
3秒前
小鱼骑单车应助经法采纳,获得10
3秒前
辰柒发布了新的文献求助10
4秒前
英俊的铭应助经法采纳,获得10
4秒前
wgl发布了新的文献求助10
4秒前
领导范儿应助氨基酸采纳,获得30
4秒前
4秒前
科研通AI2S应助zink采纳,获得10
5秒前
科目三应助Jimmy采纳,获得10
5秒前
5秒前
5秒前
芋圆Z.发布了新的文献求助10
6秒前
6秒前
东皇太憨完成签到,获得积分10
6秒前
6秒前
7秒前
润润轩轩发布了新的文献求助10
7秒前
7秒前
orixero应助韭黄采纳,获得10
8秒前
gnufgg完成签到,获得积分10
8秒前
科研通AI5应助tabor采纳,获得10
8秒前
8秒前
互助互惠互通完成签到,获得积分10
8秒前
脑洞疼应助ziyiziyi采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759