A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar

休眠 脱落酸 生物 顶端优势 植物 细胞生物学 拟南芥 赤霉素 拟南芥 葡萄年生长周期 突变体 基因 生物化学 发芽 开枪
作者
Tom Ruttink,Matthias Arend,Kris Morreel,Véronique Storme,Stéphane Rombauts,Jörg Fromm,Rishikesh P. Bhalerao,Wout Boerjan,Antje Rohde
出处
期刊:The Plant Cell [Oxford University Press]
卷期号:19 (8): 2370-2390 被引量:471
标识
DOI:10.1105/tpc.107.052811
摘要

The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老徐发布了新的文献求助10
1秒前
上官若男应助圆滚滚采纳,获得10
1秒前
zhuluya0306发布了新的文献求助10
1秒前
2秒前
负责乐安发布了新的文献求助10
2秒前
科研通AI5应助粗暴的谷云采纳,获得10
3秒前
烩面大师完成签到 ,获得积分10
4秒前
4秒前
fff发布了新的文献求助10
6秒前
爆米花应助pluto采纳,获得10
7秒前
8秒前
9秒前
乐乐应助solong1213采纳,获得10
9秒前
10秒前
赘婿应助木木采纳,获得10
10秒前
13秒前
圆滚滚发布了新的文献求助10
13秒前
14秒前
19秒前
ludov应助浪者漫心采纳,获得10
21秒前
21秒前
21秒前
22秒前
可爱的函函应助柠檬小lin采纳,获得10
23秒前
折耳根完成签到 ,获得积分10
23秒前
卖艺的读书人完成签到 ,获得积分10
25秒前
完美的妙芹完成签到,获得积分10
26秒前
26秒前
27秒前
orixero应助Zzz采纳,获得10
27秒前
科研通AI5应助peekaboo采纳,获得30
29秒前
lulu2024完成签到,获得积分10
31秒前
32秒前
阿巴发布了新的文献求助10
34秒前
34秒前
柠檬小lin完成签到 ,获得积分10
36秒前
圆滚滚完成签到,获得积分20
36秒前
36秒前
37秒前
溪鱼完成签到,获得积分10
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489201
求助须知:如何正确求助?哪些是违规求助? 3076528
关于积分的说明 9145590
捐赠科研通 2768799
什么是DOI,文献DOI怎么找? 1519439
邀请新用户注册赠送积分活动 703814
科研通“疑难数据库(出版商)”最低求助积分说明 702024