Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models

平滑的 选型 广义加性模型 数学 数学优化 推论 广义线性模型 应用数学 加性模型 算法 计算机科学 统计 人工智能
作者
Simon N. Wood
标识
DOI:10.1198/016214504000000980
摘要

Representation of generalized additive models (GAM's) using penalized regression splines allows GAM's to be employed in a straightforward manner using penalized regression methods. Not only is inference facilitated by this approach, but it is also possible to integrate model selection in the form of smoothing parameter selection into model fitting in a computationally efficient manner using well founded criteria such as generalized cross-validation. The current fitting and smoothing parameter selection methods for such models are usually effective, but do not provide the level of numerical stability to which users of linear regression packages, for example, are accustomed. In particular the existing methods cannot deal adequately with numerical rank deficiency of the GAM fitting problem, and it is not straightforward to produce methods that can do so, given that the degree of rank deficiency can be smoothing parameter dependent. In addition, models with the potential flexibility of GAM's can also present practical fitting difficulties as a result of indeterminacy in the model likelihood: Data with many zeros fitted by a model with a log link are a good example. In this article it is proposed that GAM's with a ridge penalty provide a practical solution in such circumstances, and a multiple smoothing parameter selection method suitable for use in the presence of such a penalty is developed. The method is based on the pivoted QR decomposition and the singular value decomposition, so that with or without a ridge penalty it has good error propagation properties and is capable of detecting and coping elegantly with numerical rank deficiency. The method also allows mixtures of user specified and estimated smoothing parameters and the setting of lower bounds on smoothing parameters. In terms of computational efficiency, the method compares well with existing methods. A simulation study compares the method to existing methods, including treating GAM's as mixed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云澈发布了新的文献求助10
3秒前
3秒前
3秒前
FashionBoy应助Neehi采纳,获得10
5秒前
风中听枫发布了新的文献求助10
5秒前
11完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
10秒前
更深的蓝发布了新的文献求助10
10秒前
马特发布了新的文献求助10
10秒前
11秒前
陶醉的翅膀完成签到,获得积分10
11秒前
潇潇微雨发布了新的文献求助10
12秒前
12秒前
14秒前
科研通AI5应助MOON采纳,获得10
14秒前
酷波er应助爱躺的菜鸟采纳,获得10
16秒前
机灵的向真完成签到,获得积分20
16秒前
16秒前
17秒前
17秒前
研友_VZG7GZ应助马特采纳,获得10
18秒前
粉红色的滑动变阻器完成签到 ,获得积分10
19秒前
wwww0wwww应助更深的蓝采纳,获得10
20秒前
21秒前
小龙虾应助晚上研究死采纳,获得10
21秒前
霞霞12310发布了新的文献求助10
21秒前
归尘发布了新的文献求助50
22秒前
24秒前
Neehi完成签到,获得积分20
24秒前
duoduo完成签到,获得积分20
26秒前
26秒前
天天发布了新的文献求助10
27秒前
潇潇微雨发布了新的文献求助10
28秒前
28秒前
28秒前
30秒前
霞霞12310完成签到,获得积分10
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475655
求助须知:如何正确求助?哪些是违规求助? 3067502
关于积分的说明 9104313
捐赠科研通 2759026
什么是DOI,文献DOI怎么找? 1513874
邀请新用户注册赠送积分活动 699886
科研通“疑难数据库(出版商)”最低求助积分说明 699197