Post-GWAS: where next? More samples, more SNPs or more biology?

生物 全基因组关联研究 单核苷酸多态性 计算生物学 遗传学 进化生物学 基因 基因型
作者
Paul Marjoram,Asif Zubair,Sergey V. Nuzhdin
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 79-88 被引量:75
标识
DOI:10.1038/hdy.2013.52
摘要

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively 'tagged' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
领导范儿应助WN采纳,获得10
2秒前
hh完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
2秒前
karate09judges完成签到 ,获得积分10
3秒前
Liufgui应助独特元蝶采纳,获得10
3秒前
6秒前
潇湘雪月发布了新的文献求助10
7秒前
10秒前
酷波er应助hello采纳,获得10
10秒前
10秒前
啦啦发布了新的文献求助10
10秒前
唯美发布了新的文献求助10
14秒前
hnlgdx发布了新的文献求助10
18秒前
一根完成签到,获得积分20
18秒前
七月完成签到 ,获得积分10
20秒前
xiaojiahuo完成签到,获得积分10
21秒前
22秒前
猪猪hero发布了新的文献求助10
22秒前
自信不愁完成签到,获得积分10
23秒前
潇湘雪月发布了新的文献求助10
24秒前
Arthur完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
芋孟齐完成签到,获得积分20
26秒前
猪猪hero发布了新的文献求助10
28秒前
29秒前
高手发布了新的文献求助10
29秒前
29秒前
WN发布了新的文献求助10
29秒前
超级的鹅发布了新的文献求助10
32秒前
FashionBoy应助axin采纳,获得10
33秒前
胡霖完成签到,获得积分10
34秒前
流飒完成签到,获得积分10
34秒前
香蕉觅云应助牛马码字员采纳,获得10
35秒前
猪猪hero发布了新的文献求助10
35秒前
CAOHOU应助林sir采纳,获得10
35秒前
35秒前
甜甜亦巧完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136