已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Post-GWAS: where next? More samples, more SNPs or more biology?

生物 全基因组关联研究 单核苷酸多态性 计算生物学 遗传学 进化生物学 基因 基因型
作者
Paul Marjoram,Asif Zubair,Sergey V. Nuzhdin
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 79-88 被引量:75
标识
DOI:10.1038/hdy.2013.52
摘要

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively 'tagged' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喝可乐的萝卜兔完成签到 ,获得积分10
刚刚
1秒前
人间五十年完成签到 ,获得积分10
2秒前
科研通AI5应助ytx采纳,获得10
3秒前
7秒前
开放素完成签到 ,获得积分10
8秒前
11秒前
12秒前
14秒前
毛毛发布了新的文献求助10
16秒前
ytx发布了新的文献求助10
17秒前
耶耶耶完成签到 ,获得积分10
19秒前
20秒前
尊敬幼丝完成签到,获得积分10
22秒前
Lexi发布了新的文献求助10
24秒前
25秒前
26秒前
寒冷的金鱼完成签到,获得积分10
26秒前
yuyi关注了科研通微信公众号
26秒前
小二郎应助dy采纳,获得10
26秒前
30秒前
8R60d8应助三维码采纳,获得10
31秒前
发疯的乔治完成签到 ,获得积分10
31秒前
32秒前
34秒前
yangquanquan完成签到,获得积分10
38秒前
38秒前
yuyi发布了新的文献求助10
43秒前
circle完成签到,获得积分10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
无情洋葱应助科研通管家采纳,获得10
51秒前
Owen应助科研通管家采纳,获得20
51秒前
在水一方应助科研通管家采纳,获得10
51秒前
水晶泡泡应助科研通管家采纳,获得10
51秒前
Hello应助科研通管家采纳,获得10
51秒前
51秒前
MchemG应助科研通管家采纳,获得10
51秒前
无情洋葱应助科研通管家采纳,获得10
51秒前
53秒前
56秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491275
求助须知:如何正确求助?哪些是违规求助? 3077880
关于积分的说明 9150970
捐赠科研通 2770421
什么是DOI,文献DOI怎么找? 1520328
邀请新用户注册赠送积分活动 704572
科研通“疑难数据库(出版商)”最低求助积分说明 702262