Post-GWAS: where next? More samples, more SNPs or more biology?

生物 全基因组关联研究 单核苷酸多态性 计算生物学 遗传学 进化生物学 基因 基因型
作者
Paul Marjoram,Asif Zubair,Sergey V. Nuzhdin
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 79-88 被引量:75
标识
DOI:10.1038/hdy.2013.52
摘要

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively 'tagged' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏亦松完成签到,获得积分10
1秒前
1秒前
过于喧嚣的孤独完成签到,获得积分10
1秒前
火星上亦云完成签到,获得积分10
1秒前
Iris完成签到,获得积分10
2秒前
竹林风箫完成签到,获得积分10
2秒前
苗苗043完成签到,获得积分10
2秒前
renovel完成签到,获得积分10
2秒前
Maor完成签到,获得积分10
4秒前
4秒前
4秒前
marco完成签到 ,获得积分10
5秒前
赵某人完成签到,获得积分10
5秒前
科研通AI5应助nextconnie采纳,获得10
6秒前
馨妈发布了新的文献求助10
6秒前
代杰居然完成签到 ,获得积分10
6秒前
science完成签到,获得积分10
6秒前
7秒前
qinkoko完成签到,获得积分10
8秒前
dd99081完成签到 ,获得积分10
8秒前
小屁孩完成签到,获得积分0
8秒前
知意完成签到,获得积分10
8秒前
新手完成签到 ,获得积分10
9秒前
yuncong323完成签到,获得积分10
9秒前
碧蓝香芦完成签到 ,获得积分10
10秒前
flywo发布了新的文献求助10
10秒前
萌萌完成签到,获得积分20
11秒前
特安谭完成签到,获得积分10
11秒前
Chasing完成签到 ,获得积分10
12秒前
SONGYEZI应助CyrusSo524采纳,获得200
12秒前
yilin完成签到 ,获得积分10
12秒前
qingshu完成签到,获得积分20
14秒前
可乐全糖微冰完成签到,获得积分10
14秒前
周涛完成签到,获得积分10
14秒前
馨妈完成签到,获得积分20
15秒前
zhiyu完成签到,获得积分10
15秒前
尊敬枕头完成签到 ,获得积分10
15秒前
深情安青应助好运采纳,获得10
15秒前
16秒前
伊晨完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890