Post-GWAS: where next? More samples, more SNPs or more biology?

生物 全基因组关联研究 单核苷酸多态性 计算生物学 遗传学 进化生物学 基因 基因型
作者
Paul Marjoram,Asif Zubair,Sergey V. Nuzhdin
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 79-88 被引量:75
标识
DOI:10.1038/hdy.2013.52
摘要

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively 'tagged' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助自由橘子采纳,获得10
刚刚
zzz发布了新的文献求助10
刚刚
CipherSage应助1111111111111采纳,获得10
1秒前
搞怪南风完成签到,获得积分10
1秒前
文章使我快了完成签到,获得积分10
1秒前
cooper完成签到 ,获得积分10
2秒前
Ou发布了新的文献求助10
2秒前
sxx完成签到,获得积分10
2秒前
上官若男应助tanglu采纳,获得10
2秒前
麋鹿完成签到 ,获得积分10
2秒前
公西翠萱完成签到 ,获得积分10
2秒前
qixiaoqi发布了新的文献求助10
3秒前
博慧完成签到 ,获得积分10
4秒前
小刘医生完成签到,获得积分10
6秒前
安安完成签到,获得积分10
6秒前
啊啊啊啊完成签到,获得积分10
6秒前
英俊的铭应助飞飞鱼采纳,获得10
8秒前
科目三应助zzz采纳,获得10
8秒前
小小西瓜萝卜青菜完成签到,获得积分10
8秒前
思源应助虚幻采枫采纳,获得10
9秒前
9秒前
不安的可乐完成签到,获得积分10
9秒前
10秒前
nano完成签到 ,获得积分10
10秒前
da完成签到,获得积分10
10秒前
科研通AI2S应助啊啊啊啊采纳,获得10
11秒前
cyndi发布了新的文献求助20
11秒前
12秒前
852应助小小西瓜萝卜青菜采纳,获得10
14秒前
sci完成签到,获得积分10
15秒前
醉熏的鑫发布了新的文献求助10
16秒前
Nizarn发布了新的文献求助10
16秒前
17秒前
17秒前
乐呵呵完成签到,获得积分10
17秒前
17秒前
忧心的惜天完成签到 ,获得积分10
17秒前
77完成签到,获得积分10
18秒前
yz发布了新的文献求助10
18秒前
周周南完成签到 ,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066