亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Post-GWAS: where next? More samples, more SNPs or more biology?

生物 全基因组关联研究 单核苷酸多态性 计算生物学 遗传学 进化生物学 基因 基因型
作者
Paul Marjoram,Asif Zubair,Sergey V. Nuzhdin
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 79-88 被引量:75
标识
DOI:10.1038/hdy.2013.52
摘要

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively 'tagged' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑犀牛完成签到 ,获得积分10
36秒前
53秒前
absb发布了新的文献求助10
57秒前
1分钟前
WXKennyS发布了新的文献求助10
1分钟前
Ocean完成签到,获得积分10
2分钟前
MaKJ完成签到 ,获得积分10
2分钟前
2分钟前
lsl完成签到 ,获得积分10
2分钟前
neimy完成签到,获得积分20
3分钟前
仁者无惧完成签到 ,获得积分10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
夜雨完成签到 ,获得积分10
3分钟前
爆米花应助土土采纳,获得10
3分钟前
wukong完成签到,获得积分10
4分钟前
橙子完成签到 ,获得积分10
4分钟前
博ge完成签到 ,获得积分10
4分钟前
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
凤迎雪飘完成签到,获得积分10
6分钟前
赘婿应助Nikki采纳,获得10
6分钟前
Owen应助无心的土豆采纳,获得10
6分钟前
7分钟前
7分钟前
槛外人发布了新的文献求助10
7分钟前
哈哈完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
7分钟前
千早爱音发布了新的文献求助300
7分钟前
范ER完成签到 ,获得积分10
7分钟前
万能图书馆应助清爽伯云采纳,获得10
8分钟前
槛外人完成签到,获得积分10
8分钟前
Orange应助wqwweqwe采纳,获得10
8分钟前
dahai完成签到,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357048
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389749
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378387