水准点(测量)
差异进化
计算机科学
算法
进化计算
数学优化
集合(抽象数据类型)
差速器(机械装置)
人工智能
数学
最优化问题
工程类
大地测量学
航空航天工程
程序设计语言
地理
作者
A. K. Qin,Ponnuthurai Nagaratnam Suganthan
出处
期刊:Congress on Evolutionary Computation
日期:2005-12-13
被引量:696
标识
DOI:10.1109/cec.2005.1554904
摘要
In this paper, we propose a novel self-adaptive differential evolution algorithm (SaDE), where the choice of learning strategy and the two control parameters F and CR are not required to be pre-specified. During evolution, the suitable learning strategy and parameter settings are gradually self-adapted according to the learning experience. The performance of the SaDE is reported on the set of 25 benchmark functions provided by CEC2005 special session on real parameter optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI