Multiple imputation: dealing with missing data

医学 插补(统计学) 缺少数据 统计 数学
作者
Moniek C.M. de Goeij,Merel van Diepen,Kitty J. Jager,Giovanni Tripepi,Carmine Zoccali,Friedo W. Dekker
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:28 (10): 2415-2420 被引量:118
标识
DOI:10.1093/ndt/gft221
摘要

In many fields, including the field of nephrology, missing data are unfortunately an unavoidable problem in clinical/epidemiological research. The most common methods for dealing with missing data are complete case analysis-excluding patients with missing data--mean substitution--replacing missing values of a variable with the average of known values for that variable-and last observation carried forward. However, these methods have severe drawbacks potentially resulting in biased estimates and/or standard errors. In recent years, a new method has arisen for dealing with missing data called multiple imputation. This method predicts missing values based on other data present in the same patient. This procedure is repeated several times, resulting in multiple imputed data sets. Thereafter, estimates and standard errors are calculated in each imputation set and pooled into one overall estimate and standard error. The main advantage of this method is that missing data uncertainty is taken into account. Another advantage is that the method of multiple imputation gives unbiased results when data are missing at random, which is the most common type of missing data in clinical practice, whereas conventional methods do not. However, the method of multiple imputation has scarcely been used in medical literature. We, therefore, encourage authors to do so in the future when possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助小布丁采纳,获得10
刚刚
清爽的柚子完成签到 ,获得积分10
刚刚
1秒前
Gorge完成签到,获得积分10
1秒前
XPR完成签到 ,获得积分10
1秒前
芝士完成签到 ,获得积分10
1秒前
judy发布了新的文献求助20
2秒前
2秒前
陌君子筱发布了新的文献求助10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
薰硝壤应助科研通管家采纳,获得20
2秒前
田様应助科研通管家采纳,获得10
2秒前
薰硝壤应助科研通管家采纳,获得50
2秒前
pluto应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Buxi完成签到,获得积分10
3秒前
Ivy发布了新的文献求助10
3秒前
5秒前
dgygy发布了新的文献求助10
5秒前
诚心安露发布了新的文献求助10
5秒前
科研通AI2S应助Hey采纳,获得10
6秒前
852应助yxLLLLLLLL采纳,获得10
7秒前
ddddz发布了新的文献求助10
7秒前
8秒前
8秒前
gloriafeng完成签到,获得积分10
8秒前
JamesPei应助一叶知秋采纳,获得10
8秒前
9秒前
幽默的喜羊羊完成签到,获得积分10
9秒前
9秒前
祝志泽发布了新的文献求助10
10秒前
花椒叶不想吃菜完成签到,获得积分10
10秒前
psybrain9527发布了新的文献求助10
11秒前
超级不言完成签到,获得积分10
11秒前
12秒前
杰尼龟006完成签到,获得积分10
12秒前
梵星应助Bazinga采纳,获得20
12秒前
Ran完成签到,获得积分10
12秒前
1128发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655