Sparse Reconstruction by Separable Approximation

黑森矩阵 数学 欠定系统 压缩传感 可分离空间 Lasso(编程语言) 数学优化 算法 计算机科学 迭代法 凸性 功能(生物学) 期限(时间) 应用数学 金融经济学 物理 生物 进化生物学 数学分析 万维网 量子力学 经济
作者
Stephen J. Wright,Robert D. Nowak,Mário A. T. Figueiredo
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:57 (7): 2479-2493 被引量:1849
标识
DOI:10.1109/tsp.2009.2016892
摘要

Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution and reconstruction, and compressed sensing (CS) are a few well-known areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic ( lscr 2 ) error term added to a sparsity-inducing (usually lscr 1 ) regularizater. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (i.e., separable in the unknowns) plus the original sparsity-inducing regularizer; our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. Under mild conditions (namely convexity of the regularizer), we prove convergence of the proposed iterative algorithm to a minimum of the objective function. In addition to solving the standard lscr 2 -lscr 1 case, our framework yields efficient solution techniques for other regularizers, such as an lscr infin norm and group-separable regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard lscr 2 -lscr 1 problem, as well as being efficient on problems with other separable regularization terms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Joleneli100完成签到,获得积分10
1秒前
bao驳回了无花果应助
1秒前
1秒前
星辰大海应助渊_采纳,获得10
1秒前
思绪完成签到 ,获得积分10
2秒前
YEHEI完成签到 ,获得积分10
2秒前
李健应助Na2CO3采纳,获得10
2秒前
vesta完成签到,获得积分10
2秒前
2秒前
3秒前
GG发布了新的文献求助10
3秒前
OKOK发布了新的文献求助10
3秒前
汉堡一号完成签到,获得积分10
3秒前
3秒前
3秒前
Patrick完成签到,获得积分20
3秒前
3秒前
026发布了新的文献求助10
3秒前
richestchen完成签到,获得积分10
3秒前
4秒前
LSY发布了新的文献求助10
4秒前
junjie发布了新的文献求助10
4秒前
与秋逐鹿发布了新的文献求助10
5秒前
科研通AI6应助邓谷云采纳,获得10
5秒前
5秒前
风云完成签到,获得积分10
5秒前
所所应助harden采纳,获得10
5秒前
研友_VZG7GZ应助禾几采纳,获得10
5秒前
6秒前
6秒前
6秒前
生动曼冬关注了科研通微信公众号
6秒前
思绪关注了科研通微信公众号
6秒前
Fearlessj发布了新的文献求助10
6秒前
笨笨歌曲完成签到,获得积分10
7秒前
song完成签到,获得积分20
7秒前
Zx_1993应助ttx采纳,获得10
7秒前
lulu发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064