Sparse Reconstruction by Separable Approximation

黑森矩阵 数学 欠定系统 压缩传感 可分离空间 Lasso(编程语言) 数学优化 算法 计算机科学 迭代法 凸性 功能(生物学) 期限(时间) 应用数学 金融经济学 物理 生物 进化生物学 数学分析 万维网 量子力学 经济
作者
Stephen J. Wright,Robert D. Nowak,Mário A. T. Figueiredo
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:57 (7): 2479-2493 被引量:1849
标识
DOI:10.1109/tsp.2009.2016892
摘要

Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution and reconstruction, and compressed sensing (CS) are a few well-known areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic ( lscr 2 ) error term added to a sparsity-inducing (usually lscr 1 ) regularizater. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (i.e., separable in the unknowns) plus the original sparsity-inducing regularizer; our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. Under mild conditions (namely convexity of the regularizer), we prove convergence of the proposed iterative algorithm to a minimum of the objective function. In addition to solving the standard lscr 2 -lscr 1 case, our framework yields efficient solution techniques for other regularizers, such as an lscr infin norm and group-separable regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard lscr 2 -lscr 1 problem, as well as being efficient on problems with other separable regularization terms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
学习发布了新的文献求助30
2秒前
炒蛋汉堡完成签到,获得积分10
3秒前
3秒前
牙膏发布了新的文献求助10
3秒前
着急的又晴完成签到 ,获得积分10
3秒前
聪明念真完成签到,获得积分10
4秒前
JeremyChi完成签到,获得积分10
4秒前
Double_N完成签到,获得积分10
5秒前
wanci应助椒盐柠檬茶采纳,获得10
5秒前
勤劳的人生完成签到,获得积分10
6秒前
7秒前
7秒前
小鲸鱼发布了新的文献求助10
9秒前
Ava应助吸铁石睡觉采纳,获得10
9秒前
Dayton发布了新的文献求助10
10秒前
11秒前
11秒前
yy完成签到,获得积分10
13秒前
Niki发布了新的文献求助10
13秒前
你好完成签到 ,获得积分10
14秒前
14秒前
14秒前
16秒前
16秒前
17秒前
852应助霸气的梦露采纳,获得10
17秒前
Liuyuting1008完成签到 ,获得积分10
19秒前
19秒前
喜宝完成签到 ,获得积分10
19秒前
upon发布了新的文献求助10
19秒前
20秒前
高高ai给高高ai的求助进行了留言
20秒前
20秒前
zizi完成签到,获得积分20
20秒前
20秒前
发嗲的雨筠完成签到,获得积分10
21秒前
plastic应助秃头小北鼻采纳,获得20
22秒前
22秒前
曾会锋完成签到 ,获得积分10
23秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214044
求助须知:如何正确求助?哪些是违规求助? 2862795
关于积分的说明 8135296
捐赠科研通 2529012
什么是DOI,文献DOI怎么找? 1363150
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616200