Sparse Reconstruction by Separable Approximation

黑森矩阵 数学 欠定系统 压缩传感 可分离空间 Lasso(编程语言) 数学优化 算法 计算机科学 迭代法 凸性 功能(生物学) 期限(时间) 应用数学 金融经济学 物理 生物 进化生物学 数学分析 万维网 量子力学 经济
作者
Stephen J. Wright,Robert D. Nowak,Mário A. T. Figueiredo
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:57 (7): 2479-2493 被引量:1849
标识
DOI:10.1109/tsp.2009.2016892
摘要

Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution and reconstruction, and compressed sensing (CS) are a few well-known areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic ( lscr 2 ) error term added to a sparsity-inducing (usually lscr 1 ) regularizater. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (i.e., separable in the unknowns) plus the original sparsity-inducing regularizer; our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. Under mild conditions (namely convexity of the regularizer), we prove convergence of the proposed iterative algorithm to a minimum of the objective function. In addition to solving the standard lscr 2 -lscr 1 case, our framework yields efficient solution techniques for other regularizers, such as an lscr infin norm and group-separable regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard lscr 2 -lscr 1 problem, as well as being efficient on problems with other separable regularization terms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
刚刚
anneke_完成签到,获得积分10
刚刚
Fan_完成签到,获得积分20
1秒前
1秒前
桐桐应助Mine采纳,获得10
1秒前
ly发布了新的文献求助10
1秒前
打打应助温超采纳,获得10
2秒前
jiojio完成签到,获得积分10
3秒前
刘爽完成签到,获得积分10
3秒前
3秒前
传奇3应助lee采纳,获得10
4秒前
Ethan发布了新的文献求助20
4秒前
ALONE发布了新的文献求助10
6秒前
在水一方应助笑尽往事采纳,获得10
7秒前
lilongcheng完成签到,获得积分10
7秒前
7秒前
7秒前
酷波er应助怎么会这样呢采纳,获得10
8秒前
8秒前
高高应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
9秒前
别管我了应助科研通管家采纳,获得30
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
una完成签到 ,获得积分10
9秒前
10秒前
wangjue发布了新的文献求助10
10秒前
satori完成签到,获得积分10
10秒前
大模型应助sxystc采纳,获得10
11秒前
11秒前
11秒前
ly完成签到,获得积分20
11秒前
windcreator完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102