纳米技术
骨癌
癌症治疗
癌症治疗
材料科学
癌症
医学
内科学
作者
Gary Blackburn,Timothy Scott,Ilker S. Bayer,Anindya Ghosh,Alexandru S. Biris,Abhijit Biswas
摘要
Recent advances have led to the development of multifunctional bionanomaterials that can target a bone tumor and deliver therapeutic drugs or genes. Bionanomaterial-based bone cancer treatment offers hope for treating bone cancer and provides many exciting possibilities to enable important new therapeutic outcomes. Physicists, chemists, engineers, biologists, and clinicians will continue to address research questions at the level of fundamental biology and science to develop novel biomaterials and systems, particularly enabling cost-effective and large-scale production of multifunctional nanomaterial systems. This review provides a comprehensive reflection of the recent advancements in bionanomaterials for use in bone cancer treatment. The review examines in detail different bionanomaterials (hydroxyapatite nanocrystals and nanometals, nanoscale conjugated copolymer, selenium and liposome) that have been researched and developed over the last six years for bone tissue engineering. It also discusses an important area of research - the use of engineered bone scaffolds in cancer treatment. Recently, bone scaffolds have been identified as potential targets for metastatic spread as well as a means by which escape from tumor dormancy can be studied. This review also includes discussions of a highly potent new class of anticancer compounds, e.g., geminal bisphosphonates, that has been shown to have strong affinity towards various hydroxyapatite-based bone scaffolds with controlled adsorption and release for anticancer activity. Finally, perspectives on future directions in nanotechnology-enabled bone tumor treatment are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI