上下界
趋同(经济学)
人口
算法
编码(社会科学)
数学
数学优化
突变
渐近最优算法
计算机科学
统计
生物
经济
经济增长
数学分析
生物化学
人口学
社会学
基因
作者
David Greenhalgh,Stephen Marshall
标识
DOI:10.1137/s009753979732565x
摘要
In this paper we discuss convergence properties for genetic algorithms. By looking at the effect of mutation on convergence, we show that by running the genetic algorithm for a sufficiently long time we can guarantee convergence to a global optimum with any specified level of confidence. We obtain an upper bound for the number of iterations necessary to ensure this, which improves previous results. Our upper bound decreases as the population size increases. We produce examples to show that in some cases this upper bound is asymptotically optimal for large population sizes. The final section discusses implications of these results for optimal coding of genetic algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI