卡尔曼滤波器
噪音(视频)
状态空间
贝叶斯概率
数学
控制理论(社会学)
快速卡尔曼滤波
算法
计算机科学
自适应滤波器
扩展卡尔曼滤波器
应用数学
数学优化
人工智能
统计
图像(数学)
控制(管理)
作者
Simo Särkkä,Aapo Nummenmaa
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2009-03-01
卷期号:54 (3): 596-600
被引量:587
标识
DOI:10.1109/tac.2008.2008348
摘要
This article considers the application of variational Bayesian methods to joint recursive estimation of the dynamic state and the time-varying measurement noise parameters in linear state space models. The proposed adaptive Kalman filtering method is based on forming a separable variational approximation to the joint posterior distribution of states and noise parameters on each time step separately. The result is a recursive algorithm, where on each step the state is estimated with Kalman filter and the sufficient statistics of the noise variances are estimated with a fixed-point iteration. The performance of the algorithm is demonstrated with simulated data.
科研通智能强力驱动
Strongly Powered by AbleSci AI