特征选择
随机森林
特征(语言学)
模式识别(心理学)
人工智能
排名(信息检索)
字错误率
计算机科学
脑电图
特征提取
语音识别
心理学
语言学
精神科
哲学
作者
Ka Shen,Chong‐Jin Ong,Xiaoping Li,Zheng Hui,Einar Wilder‐Smith
出处
期刊:IEEE Transactions on Biomedical Engineering
[Institute of Electrical and Electronics Engineers]
日期:2007-06-20
卷期号:54 (7): 1231-1237
被引量:131
标识
DOI:10.1109/tbme.2007.890733
摘要
Two feature selection approaches for multilevel mental fatigue electroencephalogram (EEG) classification are presented in this paper, in which random forest (RF) is combined with the heuristic initial feature ranking scheme (INIT) or with the recursive feature elimination scheme (RFE). In a "leave-one-proband-out" evaluation strategy, both feature selection approaches are evaluated on the recorded mental fatigue EEG time series data from 12 subjects (each for a 25-h duration) after initial feature extractions. The latter of the two approaches performs better both in classification performance and more importantly in feature reduction. RF with RFE achieved its lowest test error rate of 12.3% using 24 top-ranked features, whereas RF with INIT reached its lowest test error rate of 15.1% using 64 top-ranked features, compared to a test error rate of 22.1% using all 304 features. The results also show that 17 key features (out of 24 top-ranked features) are consistent between the subjects using RF with RFE, which is superior to the set of 64 features as determined by RF with INIT.
科研通智能强力驱动
Strongly Powered by AbleSci AI