材料科学
膜
体内
体外
明胶
神经生长因子
周围神经
磷酸盐
生物物理学
生物医学工程
生物化学
生物
解剖
受体
医学
生物技术
作者
Ming‐Hong Chen,Pei‐Ru Chen,Mei‐Hsiu Chen,Sung‐Tsang Hsieh,Feng‐Huei Lin
摘要
Abstract In the present study, NGF, BNDF from the neurotrophin family and IGF‐1 were covalently immobilized on gelatin–tricalcium phosphate (GTG) membrane using carbodiimide. We investigated the effects of these growth factors released from the GTG composites on cultured PC12 cells and sciatic nerve regeneration across a 10‐mm‐long gap in rats. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. The IGF‐1 group showed a higher survival promotion effect on PC12 cells than did BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neuritogenesis for PC12 cells in neurite outgrowth assay. In the animal study, the GTG conduits modified with various growth factors were well tolerated by the host tissue. In the regenerated nerves, the number of the axons per unit area of the BDNF group was significantly higher than that of NGF and GTG groups but similar to that of IGF‐1 group. However, the average axon size was the largest in NGF group. This result was in concordance with the neurite outgrowth assay in which NGF showed the highest neuritogenic potential. In the assessment of motor and sensory recovery after nerve repair, conduits modified with various neurotrophic factors showed a more favorable outcome in compound muscle action potential. The BDNF group had a better gastrocnemic muscle weight ratio than blank GTG repair. Nevertheless, the different effects of GTG conduits modified with various neurotrophic factors on functional recovery cannot be simply illustrated in the sciatic function index. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
科研通智能强力驱动
Strongly Powered by AbleSci AI