MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development

大型水蚤 水生毒理学 急性毒性 毒性 黑头呆鱼 小鱼 数量结构-活动关系 数据库 生物 毒理 慢性毒性 环境化学 生态学 渔业 化学 生物信息学 计算机科学 有机化学
作者
Mace G. Barron,Crystal R. Lilavois,Todd M. Martin
出处
期刊:Aquatic Toxicology [Elsevier]
卷期号:161: 102-107 被引量:101
标识
DOI:10.1016/j.aquatox.2015.02.001
摘要

The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limited by the availability of comprehensive high quality MOA and toxicity databases. The current study developed a dataset of MOA assignments for 1213 chemicals that included a diversity of metals, pesticides, and other organic compounds that encompassed six broad and 31 specific MOAs. MOA assignments were made using a combination of high confidence approaches that included international consensus classifications, QSAR predictions, and weight of evidence professional judgment based on an assessment of structure and literature information. A toxicity database of 674 acute values linked to chemical MOA was developed for fish and invertebrates. Additionally, species-specific measured or high confidence estimated acute values were developed for the four aquatic species with the most reported toxicity values: rainbow trout (Oncorhynchus mykiss), fathead minnow (Pimephales promelas), bluegill (Lepomis macrochirus), and the cladoceran (Daphnia magna). Measured acute toxicity values met strict standardization and quality assurance requirements. Toxicity values for chemicals with missing species-specific data were estimated using established interspecies correlation models and procedures (Web-ICE; http://epa.gov/ceampubl/fchain/webice/), with the highest confidence values selected. The resulting dataset of MOA assignments and paired toxicity values are provided in spreadsheet format as a comprehensive standardized dataset available for predictive aquatic toxicology model development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白忘幽发布了新的文献求助100
2秒前
3秒前
安静的笛完成签到,获得积分10
3秒前
科研民工完成签到,获得积分10
4秒前
慕青应助生命化育采纳,获得10
5秒前
Zstuzzy完成签到 ,获得积分10
7秒前
灶灶发布了新的文献求助10
8秒前
Jasper应助qmx采纳,获得10
9秒前
9秒前
okay好好完成签到 ,获得积分10
10秒前
轰车车发布了新的文献求助10
13秒前
曲奇饼干应助bboo采纳,获得10
13秒前
典雅的人达完成签到,获得积分10
13秒前
14秒前
清清旋雪发布了新的文献求助10
14秒前
16秒前
飘逸锦程完成签到 ,获得积分10
17秒前
nuonuo完成签到,获得积分20
17秒前
18秒前
Maple发布了新的文献求助10
19秒前
20秒前
小务发布了新的文献求助10
21秒前
100完成签到,获得积分10
21秒前
Czzzzz完成签到,获得积分10
22秒前
Hello应助Apr9810h采纳,获得30
23秒前
Yihvan发布了新的文献求助100
24秒前
生命化育发布了新的文献求助10
24秒前
上官若男应助杨气罐采纳,获得10
27秒前
27秒前
hins发布了新的文献求助10
27秒前
27秒前
饱满的土豆关注了科研通微信公众号
28秒前
31秒前
完美世界应助fifteen采纳,获得10
32秒前
生命化育完成签到,获得积分10
34秒前
35秒前
此木完成签到,获得积分10
36秒前
hins完成签到,获得积分10
36秒前
zismooo发布了新的文献求助10
36秒前
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150293
求助须知:如何正确求助?哪些是违规求助? 2801435
关于积分的说明 7844751
捐赠科研通 2458905
什么是DOI,文献DOI怎么找? 1308810
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727