生物
醛脱氢酶
癌症研究
车站3
细胞周期蛋白D1
STAT蛋白
信号转导
分子生物学
蛋白质酪氨酸磷酸酶
生物化学
细胞凋亡
细胞周期
酶
作者
Ailian Xiong,Weiping Yu,Yaobin Liu,Bob G. Sanders,Kimberly Kline
摘要
Study investigated the ability of docosahexaenoic acid (DHA) alone and in combination with gamma-tocotrienol (γT3) to eliminate aldehyde dehydrogenase positive (ALDH+) cells and to inhibit mammosphere formation, biomarker and functional assay for tumor initiating cells (TICs), respectively, in human triple negative breast cancer cells (TNBCs), and investigated possible mechanisms of action. DHA upregulated Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) protein levels and suppressed levels of phosphorylated signal transducer and activator of transcription-3 (pStat3) and its downstream mediators c-Myc, and cyclin D1. siRNA to SHP-1 enhanced the percentage of ALDH+ cells and Stat-3 signaling, as well as inhibited, in part, the ability of DHA to reduce the percentage of ALDH+ cells and Stat-3 signaling. γT3 alone and in combination with DHA reduced ALDH+ TNBCs, up-regulated SHP-1 protein levels, and suppressed Stat-3 signaling. Taken together, data demonstrate the anti-TIC potential of achievable concentrations of DHA alone as well as in combination with γT3. © 2015 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI