李普希茨连续性
独特性
维纳过程
数学
布朗运动
理论(学习稳定性)
人工神经网络
扩散
功能(生物学)
李雅普诺夫函数
扩散过程
光学(聚焦)
半群
噪音(视频)
Hopfield网络
应用数学
拉普拉斯变换
反应扩散系统
数学分析
控制理论(社会学)
计算机科学
物理
创新扩散
人工智能
机器学习
光学
图像(数学)
量子力学
进化生物学
非线性系统
知识管理
统计
控制(管理)
生物
热力学
作者
Xiao Liang,Linshan Wang,Yangfan Wang,Ruili Wang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2015-08-13
卷期号:27 (9): 1816-1826
被引量:37
标识
DOI:10.1109/tnnls.2015.2460117
摘要
In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.
科研通智能强力驱动
Strongly Powered by AbleSci AI