反链
数学
关联方
单调多边形
布尔函数
最大可满足性问题
二元布尔代数
布尔表达式
奇偶校验函数
离散数学
规范定义的布尔代数
完全布尔代数
产品术语
组合数学
功能(生物学)
集合(抽象数据类型)
纯数学
偏序集
域代数上的
计算机科学
生物
过滤代数
进化生物学
程序设计语言
几何学
作者
Ringo Baumann,Hannes Straß
标识
DOI:10.1093/logcom/exx025
摘要
A Boolean function is bipolar iff it is monotone or anti-monotone in each of its arguments. We investigate the number |$b(n)$| of |$n$|-ary bipolar Boolean functions. We present an (almost) closed-form expression for |$b(n)$| that uses the number |$a(n)$| of antichain covers of an |$n$|-element set. This is closely related to Dedekind’s problem, which can be rephrased as determining the number |$d(n)$| of Boolean functions that are monotone in all arguments. Indeed, a closed-form solution of |$a(n)$| would directly yield a closed-form solution of |$d(n)$|, suggesting that determining |$a(n)$| is a non-trivial problem of itself.
科研通智能强力驱动
Strongly Powered by AbleSci AI