Predicting Refractive Surgery Outcome: Machine Learning Approach With Big Data

光折变性角膜切除术 眼科 医学 人工智能 计算机科学 随机森林 预测值 分类器(UML) 外科 激光矫视 机器学习 激光手术 角膜 内科学
作者
Asaf Achiron,Zvi Gur,Uri Aviv,Assaf Hilely,Michael Mimouni,Lily Karmona,Lior Rokach,Igor Kaiserman
出处
期刊:Journal of Refractive Surgery [Slack Incorporated (United States)]
卷期号:33 (9): 592-597 被引量:35
标识
DOI:10.3928/1081597x-20170616-03
摘要

PURPOSE: To develop a decision forest for prediction of laser refractive surgery outcome. METHODS: Data from consecutive cases of patients who underwent LASIK or photorefractive surgeries during a 12-year period in a single center were assembled into a single dataset. Training of machine-learning classifiers and testing were performed with a statistical classifier algorithm. The decision forest was created by feature vectors extracted from 17,592 cases and 38 clinical parameters for each patient. A 10-fold cross-validation procedure was applied to estimate the predictive value of the decision forest when applied to new patients. RESULTS: Analysis included patients younger than 40 years who were not treated for monovision. Efficacy of 0.7 or greater and 0.8 or greater was achieved in 16,198 (92.0%) and 14,945 (84.9%) eyes, respectively. Efficacy of less than 0.4 and less than 0.5 was achieved in 322 (1.8%) and 506 (2.9%) eyes, respectively. Patients in the low efficacy group (< 0.4) had statistically significant differences compared with the high efficacy group (≥ 0.8), yet were clinically similar (mean differences between groups of 0.7 years, of 0.43 mm in pupil size, of 0.11 D in cylinder, of 0.22 logMAR in preoperative CDVA, of 0.11 mm in optical zone size, of 1.03 D in actual sphere treatment, and of 0.64 D in actual cylinder treatment). The preoperative subjective CDVA had the highest gain (most important to the model). Correlations analysis revealed significantly decreased efficacy with increased age ( r = −0.67, P < .001), central corneal thickness ( r = −0.40, P < .001), mean keratometry ( r = −0.33, P < .001), and preoperative CDVA ( r = −0.47, P < .001). Efficacy increased with pupil size ( r = 0.20, P < .001). CONCLUSIONS: This model could support clinical decision making and may lead to better individual risk assessment. Expanding the role of machine learning in analyzing big data from refractive surgeries may be of interest. [ J Refract Surg. 2017;33(9):592–597.]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
q1356478314应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1111应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
英俊的铭应助Amanda采纳,获得10
2秒前
中和皇极应助11111采纳,获得10
2秒前
大白完成签到 ,获得积分10
3秒前
3秒前
等风吹完成签到,获得积分20
4秒前
4秒前
5秒前
kkt完成签到,获得积分10
5秒前
一见憘完成签到 ,获得积分10
6秒前
6秒前
大白关注了科研通微信公众号
6秒前
陈隆发布了新的文献求助10
8秒前
小马甲应助rudjs采纳,获得10
10秒前
祎橘发布了新的文献求助10
10秒前
jyy发布了新的文献求助200
10秒前
10秒前
顾矜应助GGbound采纳,获得10
11秒前
万能图书馆应助尊敬寒松采纳,获得10
12秒前
12秒前
zdd发布了新的文献求助10
12秒前
陈隆完成签到,获得积分10
14秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662